2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆重慶江津長壽巴縣等七校數(shù)學(xué)高二第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)隨機變量,且,,則()A. B.C. D.2.“”是“”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.非充分非必要條件3.從8名女生4名男生中,選出3名學(xué)生組成課外小組,如果按性別比例分層抽樣,則不同的抽取方法數(shù)為()A.112種 B.100種 C.90種 D.80種4.已知函數(shù)的圖象如圖,則與的關(guān)系是:()A. B.C. D.不能確定5.一個四面體各棱長都為,四個頂點在同一球面上,則此球的表面積為()A. B. C. D.6.對于命題“正三角形的內(nèi)切圓切于三邊的中點”,可類比猜想出正四面體的內(nèi)切球切于四面體()A.各正三角形內(nèi)的點B.各正三角形的中心C.各正三角形某高線上的點D.各正三角形各邊的中點7.已知函數(shù)對于任意的滿足(其中是函數(shù)的導(dǎo)函數(shù)),則下列不等式成立的是A. B.C. D.8.口袋中裝有5個形狀和大小完全相同的小球,編號分別為1,2,3,4,5,從中任意取出3個小球,以表示取出球的最大號碼,則()A. B. C. D.9.在某次高三聯(lián)考數(shù)學(xué)測試中,學(xué)生成績服從正態(tài)分布,若在內(nèi)的概率為0.75,則任意選取一名學(xué)生,該生成績高于115的概率為()A.0.25 B.0.1 C.0.125 D.0.510.設(shè),則()A. B.10 C. D.10011.已知,若為奇函數(shù),且在上單調(diào)遞增,則實數(shù)的值是()A. B. C. D.12.下列四個圖各反映了兩個變量的某種關(guān)系,其中可以看作具有較強線性相關(guān)關(guān)系的是()A.①③ B.①④ C.②③ D.①②二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)向量,且,則的值為__________.14.已知變量,滿足約束條件,設(shè)的最大值和最小值分別是和,則__________.15.已知函數(shù),則的最大值是__________.16.用1、2、3、4、5、6組成沒有重復(fù)數(shù)字的六位數(shù),要求任何相鄰兩個數(shù)字的奇偶性不同,這樣的六位數(shù)的個數(shù)是_________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,是中點。(1)求異面直線與所成角的大?。?2)求與平面所成角的大小。18.(12分)已知向量a=(3sinα,cosα),b=(2sinα,5sinα-4cosα),α∈,且a⊥b.(1)求tanα的值;(2)求cos的值.19.(12分)某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值.(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評判(表示對應(yīng)事件的概率)①②③評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學(xué)期望.20.(12分)(1)求的展開式中的常數(shù)項;(2)用,,,,組成一個無重復(fù)數(shù)字的五位數(shù),求滿足條件的五位數(shù)中偶數(shù)的個數(shù).21.(12分)如圖,已知單位圓上有四點,,,,其中,分別設(shè)的面積為和.(1)用表示和;(2)求的最大值及取最大值時的值.22.(10分)為了實現(xiàn)綠色發(fā)展,避免能源浪費,某市計劃對居民用電實行階梯收費.階梯電價原則上以住宅(一套住宅為一戶)的月用電量為基準(zhǔn)定價,具體劃分標(biāo)準(zhǔn)如表:階梯級別第一階梯電量第二階梯電量第三階梯電量月用電量范圍(單位:kW?h)(0,200](200,400](400,+∞]從本市隨機抽取了100戶,統(tǒng)計了今年6月份的用電量,這100戶中用電量為第一階梯的有20戶,第二階梯的有60戶,第三階梯的有20戶.(1)現(xiàn)從這100戶中任意選取2戶,求至少1戶用電量為第二階梯的概率;(2)以這100戶作為樣本估計全市居民的用電情況,從全市隨機抽取3戶,X表示用電量為第二階梯的戶數(shù),求X的概率分布列和數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據(jù)隨機變量符合二項分布,根據(jù)二項分布的期望和方差公式得到關(guān)于,的方程組,注意兩個方程之間的關(guān)系,把一個代入另一個,以整體思想來解決,求出的值,再求出的值,得到結(jié)果.【題目詳解】解:隨機變量,,,,①②把①代入②得,,故選:.【題目點撥】本題考查離散型隨機變量的期望和方差,考查二項分布的期望和方差公式,屬于基礎(chǔ)題.2、A【解題分析】

畫出曲線和的圖像,根據(jù)圖像觀察即可得結(jié)果.【題目詳解】在平面直角坐標(biāo)系中畫出曲線和的圖像,如圖:表示的點是圖中圓上及圓內(nèi)部的點,表示的點是圖中正方形上及正方形內(nèi)部的點,所以“”是“”的充分非必要條件,故選:A.【題目點撥】本題考查充分性和必要性的判斷,找出集合包含關(guān)系是快速判斷的重點,可以數(shù)形結(jié)合畫出曲線圖像,通過圖像觀察包含關(guān)系,本題是中檔題.3、A【解題分析】分析:根據(jù)分層抽樣的總體個數(shù)和樣本容量,做出女生和男生各應(yīng)抽取的人數(shù),得到女生要抽取2人,男生要抽取1人,根據(jù)分步計數(shù)原理得到需要抽取的方法數(shù).詳解:∵8名女生,4名男生中選出3名學(xué)生組成課外小組,∴每個個體被抽到的概率是,根據(jù)分層抽樣要求,應(yīng)選出8×=2名女生,4×=1名男生,∴有C82?C41=1.故答案為:A.點睛:本題主要考查分層抽樣和計數(shù)原理,意在考查學(xué)生對這些知識的掌握水平.4、B【解題分析】

通過導(dǎo)數(shù)的幾何意義結(jié)合圖像即得答案.【題目詳解】由于導(dǎo)數(shù)表示的幾何意義是切線斜率,而由圖可知,在A處的切線傾斜角小于在B處切線傾斜角,且都在第二象限,故,答案為B.【題目點撥】本題主要考查導(dǎo)數(shù)的幾何意義,比較基礎(chǔ).5、A【解題分析】試題分析:正四面體擴展為正方體,二者有相同的外接球,通過正方體的對角線的長度就是外接球的直徑,求出球的表面積.由于正四面體擴展為正方體,二者有相同的外接球,所以正方體的棱長為:1,所以正方體的對角線的長度就是外接球的直徑,所以球的半徑為,所以球的表面積為:,故選A.考點:球內(nèi)接多面體6、B【解題分析】四面體的面可以與三角形的邊類比,因此三邊的中點也就類比成各三角形的中心,故選擇B.7、D【解題分析】

根據(jù)題目條件,構(gòu)造函數(shù),求出的導(dǎo)數(shù),利用“任意的滿足”得出的單調(diào)性,即可得出答案。【題目詳解】由題意知,構(gòu)造函數(shù),則。當(dāng)時,當(dāng)時,恒成立在單調(diào)遞增,則,化簡得,無法判斷A選項是否成立;,化簡得,故B選項不成立;,化簡得,故C選項不成立;,化簡得,故D選項成立;綜上所述,故選D?!绢}目點撥】本題主要考查了構(gòu)造函數(shù)法證明不等式,常利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性證明不等式,是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點。8、A【解題分析】

首先計算各個情況概率,利用數(shù)學(xué)期望公式得到答案.【題目詳解】故.故本題正確答案為A.【題目點撥】本題考查了概率的計算和數(shù)學(xué)期望的計算,意在考查學(xué)生的計算能力.9、C【解題分析】

根據(jù)正態(tài)曲線的對稱性求解即可得到所求概率.【題目詳解】由題意得,區(qū)間關(guān)于對稱,所以,即該生成績高于115的概率為.故選C.【題目點撥】本題考查根據(jù)正態(tài)曲線的對稱性求在給定區(qū)間上的概率,求解的關(guān)鍵是把所給區(qū)間用已知區(qū)間表示,并根據(jù)曲線的對稱性進行求解,考查數(shù)形結(jié)合的應(yīng)用,屬于基礎(chǔ)題.10、B【解題分析】

利用復(fù)數(shù)的除法運算化簡為的形式,然后求得的表達(dá)式,進而求得.【題目詳解】,,.故選B.【題目點撥】本小題主要考查復(fù)數(shù)的除法運算,考查復(fù)數(shù)的平方和模的運算,屬于基礎(chǔ)題.11、B【解題分析】

先根據(jù)奇函數(shù)性質(zhì)確定取法,再根據(jù)單調(diào)性進行取舍,進而確定選項.【題目詳解】因為為奇函數(shù),所以因為,所以因此選B.【題目點撥】本題考查冪函數(shù)奇偶性與單調(diào)性,考查基本判斷選擇能力.12、B【解題分析】

兩個變量的散點圖,若樣本點成帶狀分布,則兩個變量具有線性相關(guān)關(guān)系,∴兩個變量具有線性相關(guān)關(guān)系的圖是①和④,故選B.考點:變量間的相關(guān)關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、168【解題分析】

根據(jù)向量,設(shè),列出方程組,求得,得到,再利用向量的數(shù)量積的運算公式,即可求解.【題目詳解】由題意,向量,設(shè),又因為,所以,即,解得,所以,所以.故答案為:.【題目點撥】本題主要考查了向量的共線的坐標(biāo)運算,以及向量的數(shù)量積的運算,其中解答中熟記向量的共線條件,熟練應(yīng)用向量的數(shù)量積的運算公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解題分析】

在平面直角坐標(biāo)系內(nèi),畫出不等式組所表示的平面區(qū)域,可以發(fā)現(xiàn)變量,都是正數(shù),故令,這樣根據(jù)的幾何意義,可以求出的取值范圍,利用表示出,利用函數(shù)的性質(zhì),可以求出的最值,最后計算出的值.【題目詳解】在平面直角坐標(biāo)系內(nèi),畫出不等式組所表示的平面區(qū)域,如下圖所示:從圖中可知:變量,都是正數(shù),令,它表示不等式組所表示的平面區(qū)域內(nèi)的點與原點的連線的斜率,解方程組:,可得點,解方程組:,可得點,所以有,因此,,,故.【題目點撥】本題考查了不等式所表示的平面區(qū)域,考查了斜率模型,考查了數(shù)形結(jié)合思想.15、【解題分析】分析:對函數(shù)求導(dǎo),研究函數(shù)的單調(diào)性,得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的最值.詳解:函數(shù),設(shè),函數(shù)在故當(dāng)t=時函數(shù)取得最大值,此時故答案為:.點睛:這個題目考查了函數(shù)最值的求法,較為簡單,求函數(shù)的值域或者最值常用的方法有:求導(dǎo)研究單調(diào)性,或者直接研究函數(shù)的單調(diào)性,或者應(yīng)用均值不等式求最值.16、72【解題分析】

先排奇數(shù)(或偶數(shù)),然后從排好的三個數(shù)形成的四個空中選擇相鄰的三個再排剩下的偶數(shù)(或奇數(shù)),由此可得結(jié)果.【題目詳解】先排三個奇數(shù),共有種結(jié)果,然后再從形成的四個空中選擇前三個或后三個空排入三個偶數(shù),共有種結(jié)果.由分步乘法計數(shù)原理可得這樣的六位數(shù)共有個.故答案為:.【題目點撥】對于排列問題,一般情況下要從受到限制的特殊元素開始考慮,有時也從特殊的位置開始討論.對于相鄰問題常用“捆綁法”;對于不相鄰問題常用“插空法”;對于“在與不在”的問題,常使用“直接法”或“排除法”.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)推導(dǎo)出PA⊥AB,PA⊥AD.以A為原點,AB,AD,AP分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能求出異面直線DP與CQ所成角的余弦值.(2)設(shè)平面法向量,與平面所成角,由得出,代入即可得解.【題目詳解】(1)以A為原點,AB,AD,AP分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz,,設(shè)與所成角是所以與所成角是.(2)設(shè)平面法向量,與平面所成角令,所以與平面所成角.【題目點撥】本題考查異面直線所成角的余弦值、線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題.18、(1)-(2)【解題分析】(1)∵a⊥b,∴a·b=0.而a=(3sinα,cosα),b=(2sinα,5sinα-4cosα),故a·b=6sin2α+5sinαcosα-4cos2α=0,即=0.由于cosα≠0,∴6tan2α+5tanα-4=0.解得tanα=-或tanα=.∵α∈,∴tanα<0,∴tanα=-.(2)∵α∈,∴∈.由tanα=-,求得tan=-或tan=2(舍去).∴sin=,cos=-,∴cos=coscos-sin·sin=-×-×=-19、(1)不滿足至少兩個不等式,該生產(chǎn)線需檢修;(2)見解析.【解題分析】分析:(1)根據(jù)頻率分布直方圖得出X落在上的概率,從而得出結(jié)論;(2)根據(jù)題意,的可能值為:0,1,2,分別求出對應(yīng)的概率即可.詳解:(1)由題意知,由頻率分布直方圖得:不滿足至少兩個不等式,該生產(chǎn)線需檢修.(2)由(1)知:任取一件是次品的概率為:任取兩件產(chǎn)品得到次品數(shù)的可能值為:0,1,2則的分布列為:012(或)點睛:本題考查了頻率分布直方圖,離散型隨機變量的分布列,屬于中檔題.20、(1)15;(2)48.【解題分析】分析:(1)由排列組合的知識可知常數(shù)項為.(2)由排列組合的知識可知滿足題意的偶數(shù)的個數(shù)為.詳解:(1)由排列組合的知識可知的展開式中的常數(shù)項為.(2)首先排列好個位,然后排列其余位數(shù)上的數(shù)字,由排列組合的知識可知滿足條件的五位數(shù)為偶數(shù)的個數(shù)為.點睛:本題主要考查排列組合與二項式定理知識的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.21、(1),;(2)的最大值為,此時的值為.【解題分析】

試題分析:解(1)根據(jù)三角函數(shù)的定義,知所以,所.又因為四邊形OABC的面積=,所以.(2)由(1)知.因為,所以,所以,所以的最大值為,此時的值為.考點:三角函數(shù)的性質(zhì)點評:主要是考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論