版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆福建省泉州市南安國光中學(xué)高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)的圖象向右平移個(gè)周期后,所得圖象關(guān)于軸對(duì)稱,則的最小正值是()A. B. C. D.2.函數(shù)與在上最多有n個(gè)交點(diǎn),交點(diǎn)分別為(,……,n),則()A.7 B.8 C.9 D.103.若平面向量,滿足,則的最大值為()A. B. C. D.4.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)5.近年來,隨著網(wǎng)絡(luò)的普及和智能手機(jī)的更新?lián)Q代,各種方便的相繼出世,其功能也是五花八門.某大學(xué)為了調(diào)查在校大學(xué)生使用的主要用途,隨機(jī)抽取了名大學(xué)生進(jìn)行調(diào)查,各主要用途與對(duì)應(yīng)人數(shù)的結(jié)果統(tǒng)計(jì)如圖所示,現(xiàn)有如下說法:①可以估計(jì)使用主要聽音樂的大學(xué)生人數(shù)多于主要看社區(qū)、新聞、資訊的大學(xué)生人數(shù);②可以估計(jì)不足的大學(xué)生使用主要玩游戲;③可以估計(jì)使用主要找人聊天的大學(xué)生超過總數(shù)的.其中正確的個(gè)數(shù)為()A. B. C. D.6.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.27.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.78.在三角形中,,,求()A. B. C. D.9.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件10.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]11.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.12.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動(dòng)直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.14.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.15.已知,則__________.16.函數(shù)在的零點(diǎn)個(gè)數(shù)為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,離心率為,為橢圓上一動(dòng)點(diǎn)(異于左右頂點(diǎn)),面積的最大值為.(1)求橢圓的方程;(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.18.(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.19.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)求曲線上的點(diǎn)到直線距離的最小值和最大值.20.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).21.(12分)已知三棱錐中側(cè)面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點(diǎn).為線段上的點(diǎn),且.(1)證明:為線段的中點(diǎn);(2)求二面角的余弦值.22.(10分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對(duì)賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個(gè)周期后的解析式為,因?yàn)楹瘮?shù)的圖象關(guān)于軸對(duì)稱,所以,即,所以當(dāng)時(shí),有最小正值為.故選:D【點(diǎn)睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.2、C【解析】
根據(jù)直線過定點(diǎn),采用數(shù)形結(jié)合,可得最多交點(diǎn)個(gè)數(shù),然后利用對(duì)稱性,可得結(jié)果.【詳解】由題可知:直線過定點(diǎn)且在是關(guān)于對(duì)稱如圖通過圖像可知:直線與最多有9個(gè)交點(diǎn)同時(shí)點(diǎn)左、右邊各四個(gè)交點(diǎn)關(guān)于對(duì)稱所以故選:C【點(diǎn)睛】本題考查函數(shù)對(duì)稱性的應(yīng)用,數(shù)形結(jié)合,難點(diǎn)在于正確畫出圖像,同時(shí)掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.3、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.4、C【解析】
根據(jù)并集的求法直接求出結(jié)果.【詳解】∵,∴,故選C.【點(diǎn)睛】考查并集的求法,屬于基礎(chǔ)題.5、C【解析】
根據(jù)利用主要聽音樂的人數(shù)和使用主要看社區(qū)、新聞、資訊的人數(shù)作大小比較,可判斷①的正誤;計(jì)算使用主要玩游戲的大學(xué)生所占的比例,可判斷②的正誤;計(jì)算使用主要找人聊天的大學(xué)生所占的比例,可判斷③的正誤.綜合得出結(jié)論.【詳解】使用主要聽音樂的人數(shù)為,使用主要看社區(qū)、新聞、資訊的人數(shù)為,所以①正確;使用主要玩游戲的人數(shù)為,而調(diào)查的總?cè)藬?shù)為,,故超過的大學(xué)生使用主要玩游戲,所以②錯(cuò)誤;使用主要找人聊天的大學(xué)生人數(shù)為,因?yàn)?,所以③正確.故選:C.【點(diǎn)睛】本題考查統(tǒng)計(jì)中相關(guān)命題真假的判斷,計(jì)算出相應(yīng)的頻數(shù)與頻率是關(guān)鍵,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6、B【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡單題.7、C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.8、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.9、A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.10、D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.11、D【解析】
根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.12、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙?duì)向量進(jìn)行轉(zhuǎn)換,便于計(jì)算解題.14、【解析】
先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問題,涉及到距離的最值問題,在處理這類問題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.15、【解析】
首先利用,將其兩邊同時(shí)平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導(dǎo)公式求得,得到結(jié)果.【詳解】因?yàn)?,所以,即,所以,故答案?【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識(shí)點(diǎn)有同角三角函數(shù)關(guān)系式,倍角公式,誘導(dǎo)公式,屬于簡單題目.16、1【解析】
本問題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】
(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形,設(shè),,線段的中點(diǎn)為,根據(jù)韋達(dá)定理求出點(diǎn)的坐標(biāo),再根據(jù),,即可求出的值,可得點(diǎn)的坐標(biāo).【詳解】(1)面積的最大值為,則:又,,解得:,橢圓的方程為:(2)假設(shè)軸上存在點(diǎn),是以為直角頂點(diǎn)的等腰直角三角形設(shè),,線段的中點(diǎn)為由,消去可得:,解得:∴,,依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當(dāng)時(shí),點(diǎn)滿足題意;當(dāng)時(shí),點(diǎn)滿足題意故軸上存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形【點(diǎn)睛】本題考查了橢圓的方程,直線和橢圓的位置關(guān)系,斜率公式,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于中檔題.18、(1)見解析;(2)(﹣∞,0]【解析】
(1)利用導(dǎo)數(shù)求x<0時(shí),f(x)的極大值為,即證(2)等價(jià)于k≤,x>0,令g(x)=,x>0,再求函數(shù)g(x)的最小值得解.【詳解】(1)∵函數(shù)f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,∴f(x)在(﹣∞,﹣)內(nèi)遞增,在(﹣,0)內(nèi)遞減,在(0,+∞)內(nèi)遞增,∴f(x)的極大值為,∴當(dāng)x<0時(shí),f(x)≤(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,令g(x)=,x>0,則g′(x),令h(x)=x2(1+3x)e3x+2lnx﹣1,則h(x)在(0,+∞)上單調(diào)遞增,且x→0+時(shí),h(x)→﹣∞,h(1)=4e3﹣1>0,∴存在x0∈(0,1),使得h(x0)=0,∴當(dāng)x∈(0,x0)時(shí),g′(x)<0,g(x)單調(diào)遞減,當(dāng)x∈(x0,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增,∴g(x)在(0,+∞)上的最小值是g(x0)=,∵h(yuǎn)(x0)=+2lnx0﹣1=0,所以,令,令所以=1,,∴g(x0)∴實(shí)數(shù)k的取值范圍是(﹣∞,0].【點(diǎn)睛】本題主要考查利用證明不等式,考查利用導(dǎo)數(shù)求最值和解答不等式的恒成立問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.19、(1)(2)最大值;最小值.【解析】
(1)結(jié)合極坐標(biāo)和直角坐標(biāo)的互化公式可得;(2)利用參數(shù)方程,求解點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)知識(shí)求解最值.【詳解】解:(1)因?yàn)?,代入,可得直線的直角坐標(biāo)方程為.(2)曲線上的點(diǎn)到直線的距離,其中,.故曲線上的點(diǎn)到直線距離的最大值,曲線上的點(diǎn)到直線的距離的最小值.【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及最值問題,橢圓上的點(diǎn)到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).20、見解析【解析】
(1)當(dāng)時(shí),函數(shù),其定義域?yàn)?,則,設(shè),,易知函數(shù)在上單調(diào)遞增,且,所以當(dāng)時(shí),,即;當(dāng)時(shí),,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域?yàn)?,,設(shè),,顯然函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,,所以函數(shù)在內(nèi)有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,所以函數(shù)有且僅有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 36077-2025精益六西格瑪管理評(píng)價(jià)準(zhǔn)則
- GB/Z 108-2026健康信息學(xué)互聯(lián)網(wǎng)健康服務(wù)模式
- 申鳳琴-《電工電子技術(shù)基礎(chǔ)》第2章習(xí)題講解
- 獸藥飼料執(zhí)法培訓(xùn)課件
- 火鍋跨年活動(dòng)策劃方案(3篇)
- 珠寶門店財(cái)務(wù)管理制度(3篇)
- 疾病分期及分級(jí)管理制度(3篇)
- 車輛運(yùn)輸清洗管理制度內(nèi)容(3篇)
- 《GA 871-2010防爆罐》專題研究報(bào)告
- 獸醫(yī)課件培訓(xùn)
- 2024-2025學(xué)年湖北省武漢市江漢區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷
- 常規(guī)體檢指標(biāo)講解
- 感術(shù)行動(dòng)培訓(xùn)課件
- 建筑工程生產(chǎn)管理培訓(xùn)
- 新人教版高中數(shù)學(xué)必修第二冊(cè)-第八章 立體幾何初步 章末復(fù)習(xí)【課件】
- 倉庫物料效期管理制度
- 臥床老人口腔護(hù)理規(guī)范
- GB/T 157-2025產(chǎn)品幾何技術(shù)規(guī)范(GPS)圓錐的錐度與錐角系列
- T/CCT 017-2024中低溫煤焦油
- 電子公司生產(chǎn)部年終工作總結(jié)
- ISO27001:2022信息安全管理體系全套文件+表單
評(píng)論
0/150
提交評(píng)論