2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆浙江省杭州市杭州第二中學(xué)高三六校第一次聯(lián)考數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn),間的距離為2,動點(diǎn)與,的距離之比為,當(dāng),,不共線時(shí),的面積的最大值是()A. B. C. D.2.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.13.已知,則下列關(guān)系正確的是()A. B. C. D.4.設(shè),其中a,b是實(shí)數(shù),則()A.1 B.2 C. D.5.若、滿足約束條件,則的最大值為()A. B. C. D.6.若雙曲線:的一條漸近線方程為,則()A. B. C. D.7.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.8.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.710.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.11.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.12.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知角的終邊過點(diǎn),則______.14.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.15.的展開式中的常數(shù)項(xiàng)為_______.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學(xué)生的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識,高二年級準(zhǔn)備成立一個環(huán)境保護(hù)興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.18.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),為其前n項(xiàng)和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的通項(xiàng)公式是,前n項(xiàng)和為,求證:對于任意的正數(shù)n,總有.19.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點(diǎn).(1)求證:平面;(2)若,求二面角的余弦值大小.20.(12分)在①;②;③這三個條件中任選一個,補(bǔ)充在下面問題中的橫線上,并解答相應(yīng)的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.21.(12分)如圖,三棱柱中,平面,,,分別為,的中點(diǎn).(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.22.(10分)在△ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)平面內(nèi)兩定點(diǎn),間的距離為2,動點(diǎn)與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡得,當(dāng)點(diǎn)到(軸)距離最大時(shí),的面積最大,∴面積的最大值是.故選:A.【點(diǎn)睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.2、C【解析】

利用復(fù)數(shù)的四則運(yùn)算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、虛部概念,考查運(yùn)算求解能力,屬于基礎(chǔ)題.3、A【解析】

首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因?yàn)?,,,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計(jì)算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算,考驗(yàn)計(jì)算,屬基礎(chǔ)題.5、C【解析】

作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.【點(diǎn)睛】本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.6、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.7、A【解析】

先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.8、C【解析】

求出導(dǎo)函數(shù),由有不等的兩實(shí)根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.9、C【解析】

根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過程.10、D【解析】

首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.11、A【解析】

首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.12、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點(diǎn),∴,,∴,故答案為:.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.14、【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.15、【解析】

寫出展開式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.

故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項(xiàng)公式分析常數(shù)項(xiàng)對應(yīng)的取值.16、1【解析】

直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學(xué)生的人數(shù)為6001.故答案為:1.【點(diǎn)睛】本題考查了分層抽樣的計(jì)算,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因?yàn)閷W(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點(diǎn)睛】本題考查分層抽樣,考查超幾何分布及期望,考查運(yùn)算求解能力,是基礎(chǔ)題18、(1)(2)證明見解析【解析】

(1)根據(jù)公式得到,計(jì)算得到答案.(2),根據(jù)裂項(xiàng)求和法計(jì)算得到,得到證明.【詳解】(1)由已知得時(shí),,故.故數(shù)列為等比數(shù)列,且公比.又當(dāng)時(shí),,..(2)..【點(diǎn)睛】本題考查了數(shù)列通項(xiàng)公式和證明數(shù)列不等式,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.19、(1)見解析;(2)【解析】

(1)設(shè)中點(diǎn)為,連接、,首先通過條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點(diǎn)為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點(diǎn)為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點(diǎn)為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點(diǎn),,建立直角坐標(biāo)系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點(diǎn)睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力和空間想象能力,是中檔題.20、橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因?yàn)?,所?從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【點(diǎn)睛】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進(jìn)行邊角轉(zhuǎn)換,求三角形面積時(shí),①若三角形中已知一個角(角的大小或該角的正、余弦值),結(jié)合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當(dāng)選擇面積公式是解題的關(guān)鍵.21、(1)詳見解析;(2).【解析】

(1)連接,,則且為的中點(diǎn),又∵為的中點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論