版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PartIIIDistributed--ParameterSystems第III篇分布參數(shù)體系Chapter17Partialdifferentialequationsofmotion34567891011121314151617181920212223242526(1)國內(nèi)教材(點擊閱讀)劉晶波、杜修力--結(jié)構(gòu)動力學(xué)俞載道--結(jié)構(gòu)動力學(xué)基礎(chǔ)于建華--高等結(jié)構(gòu)動力學(xué)邱吉寶--計算結(jié)構(gòu)動力學(xué)李明昭--橋梁結(jié)構(gòu)動力分析
胡宗武--工程振動分析基礎(chǔ)胡兆同--結(jié)構(gòu)振動與穩(wěn)定胡少偉--結(jié)構(gòu)振動理論及其應(yīng)用包世華--結(jié)構(gòu)動力學(xué)彭俊生--結(jié)構(gòu)動力學(xué)、抗震計算與SAP2000應(yīng)用盛宏玉--結(jié)構(gòu)動力學(xué)輔導(dǎo)與習題精解盛宏玉--結(jié)構(gòu)動力學(xué)
(第二版)王光遠--應(yīng)用分析動力學(xué)(2)Clough教材資料(點擊閱讀)克拉夫--結(jié)構(gòu)動力學(xué)(81版)結(jié)構(gòu)動力學(xué)(第2版)中文版克拉夫--DynamicsofStructure(英文原版)結(jié)構(gòu)動力學(xué)習題詳解(Clough版)(3)Chopra教材資料(點擊閱讀)Chopra--結(jié)構(gòu)動力學(xué)_理論及其在地震工程中的應(yīng)用(第2版)(中文版)Chopra--DynamicsofStructures(4thEdition,英文原版)Chopra--(入門)結(jié)構(gòu)動力學(xué)入門Chopra--(入門)DynamicsofStructures:APrimerChopra哈工大結(jié)構(gòu)動力學(xué)講義結(jié)構(gòu)動力學(xué)學(xué)習資料下載鏈接:/post/109.html272024/2/25蘭州理工大學(xué)土木工程學(xué)院韓建平3017--1INTRODUCTIONThediscrete--coordinatesystemsdescribedinPartTwoprovideaconvenientandpracticalapproachtothedynamicresponseanalysisofarbitrarystructures.However,thesolutionsobtainedcanonlyapproximatetheiractualdynamicbehaviorbecausethemotionsarerepresentedbyalimitednumberofdisplacementcoordinates.Theprecisionoftheresultscanbemadeasrefinedasdesiredbyincreasingthenumberofdegreesoffreedomconsideredintheanalyses.Inprinciple,however,aninfinitenumberofcoordinateswouldberequiredtoconvergetotheexactresultsforanyrealstructurehavingdistributedproperties;hencethisapproachtoobtaininganexactsolutionismanifestlyimpossible.Theformalmathematicalprocedureforconsideringthebehaviorofaninfinitenumberofconnectedpointsisbymeansofdifferentialequationsinwhichthepositioncoordinatesaretakenasindependentvariables.Inasmuchastimeisalsoanindependentvariableinadynamicresponseproblem,theformulationoftheequationsofmotioninthiswayleadstopartialdifferentialequations.Differentclassesofcontinuoussystemscanbeidentifiedinaccordancewiththenumberofindependentvariablesrequiredtodescribethedistributionoftheirphysicalproperties.Forexam-ple,thewave--propagationformulasusedinseismologyandgeophysicsarederivedfromtheequationsofmotionexpressedforgeneralthree--dimensionalsolids.Simi-larly,instudyingthedynamicbehaviorofthin-plateorthin--shellstructures,specialequationsofmotionmustbederivedforthesetwo--dimensionalsystems.Inthepresentdiscussion,however,attentionwillbelimitedtoone--dimensionalstructures,thatis,beam--androd--typesystemswhichmayhavevariablemass,damping,andstiffnesspropertiesalongtheirelasticaxes.Thepartialdifferentialequationsofthesesystemsinvolveonlytwoindependentvariables:timeanddistancealongtheelasticaxisofeachcomponentmember.Itispossibletoderivetheequationsofmotionforrathercomplexone--dimensionalstructures,includingassemblagesofmanymembersinthree-dimensionalspace.Moreover,theaxesoftheindividualmembersmightbearbitrarilycurvedinthree--dimensionalspace,andthephysicalpropertiesmightvaryasacomplicatedfunctionofpositionalongtheaxis.However,thesolutionsoftheequationsofmotionforsuchcomplexsystemsgenerallycanbeobtainedonlybynumericalmeans,andinmostcasesadiscrete--coordinateformulationispreferabletoacontinuous--coordinateformulation.Forthisreason,thepresenttreatmentwillbelimitedtosimplesystemsinvolvingmembershavingstraightelasticaxesandassemblagesofsuchmembers.Informulatingtheequationsofmotion,generalvariationsofthephysicalpropertiesalongeachaxiswillbepermitted,althoughinsubsequentsolutionsoftheseequations,thepropertiesofeachmemberwillbeassumedtobeconstant.Becauseoftheseseverelimitationsofthecaseswhichmaybeconsidered,thispresentationisintendedmainlytodemonstratethegeneralconceptsofthepartial--differential--equationformulationratherthantoprovideatoolforsignificantpracticalapplicationtocomplexsystems.Closedformsolutionsthroughthisformulationcan,however,beveryusefulwhentreatingsimpleuniformsystems.Chapter17PartialDifferentialEquationsofMotion17--2BeamFlexure:ElementaryCaseFIGURE17-1Basicbeamsubjectedtodynamicloading:(a)beampropertiesandcoordinates;(b)resultantforcesactingondifferentialelement.Afterdroppingthetwosecond--ordermomenttermsinvolvingtheinertiaandappliedloadings,onegetsThisisthepartialdifferentialequationofmotionfortheelementarycaseofbeamflexure.Thesolutionofthisequationmust,ofcourse,satisfytheprescribedboundaryconditionsatx=0andx=L.17--3BeamFlexure:IncludingAxial--ForceEffectsFIGURE17-2Beamwithstaticaxialloadinganddynamiclateralloading:(a)beamdeflectedduetoloadings;(b)resultantforcesactingondifferentialelement.17--4BeamFlexure:IncludingViscousDampingIntheprecedingformulationsofthepartialdifferentialequationsofmotionforbeam--typemembers,nodampingwasincluded.Nowdistributedviscousdampingoftwotypeswillbeincluded:(1)anexternaldampingforceperunitlengthasrepresentedbyc(x)inFig.8--3and(2)internalresistanceopposingthestrainvelocityasrepresentedbythesecondpartsofEqs.(8--8)and(8--9).17--6AXIALDEFORMATIONS:UNDAMPEDTheprecedingdiscussionsinSections17--2through17--5havebeenconcernedwithbeamflexure,inwhichcasethedynamicdisplacementsareinthedirectiontransversetotheelasticaxis.Whilethisbendingmechanismisthemostcommontypeofbehaviorencounteredinthedynamicanalysisofone--dimensionalmembers,someimportantcasesinvolveonlyaxialdisplacements,e.g.,apilesubjectedtohammerblowsduringthedrivingprocess.Theequationsofmotiongoverningsuchbehaviorcanbederivedbyaproceduresimilartothatusedindevelopingtheequationsofmotionforflexure.However,derivationissimplerfortheaxial--deformationcase,sinceequilibriumneedbeconsideredonlyinonedirectionratherthantwo.Inthisformulation,dampingisneglectedbecauseitusuallyhaslittleeffectonthebehaviorinaxialdeformation.FIGURE17-4Barsubjectedtodynamicaxialdeformations:(a)barpropertiesandcoordinates;(b)forcesactingondifferentialelement.Chapter18Analysisofundampedfreevibration18-1BEAMFLEXURE:ELEMENTARYCASEFollowingthesamegeneralapproachemployedwithdiscrete-parametersys-tems,thefirststepinthedynamic--responseanalysisofadistributed--parametersystemistoevaluateitsundampedmodeshapesandfrequencies.Becauseofthemathematicalcomplicationsoftreatingsystemshavingvariableproperties,thefollowingdiscussionwillbelimitedtobeamshavinguniformpropertiesalongtheirlengthsandtoframesassembledfromsuchmembers.Thisisnotaseriouslimitation,however,becauseitismoreefficienttotreatanyvariable--propertysystemsusingdiscrete-parametermodeling.(17-7)(18-1)(18-2)(18-3)First,letusconsidertheelementarycasepresentedinSection17--2withandsetequaltoconstantsand,respectively.AsshownbyEq.(17--7),thefree--vibrationequationofmotionforthissystemisExampleE18-1.SimpleBeamConsideringtheuniformsimplebeamshowninFig.E18-1a,itsfourknownboundaryconditionsareFIGUREE18-1Simplebeam-vibrationanalysis:(a)basicpropertiesofsimplebeam;(b)firstthreevibrationmodes.第五章無限自由度體系的振動分析5.1運動方程的建立一.彎曲振動方程微段平衡方程撓曲微分方程消去內(nèi)力,得加慣性力,得運動方程二.考慮軸力對彎曲的影響時的彎曲振動方程三.考慮剪切變形與慣性力矩對彎曲的影響時的彎曲振動方程1.考慮剪切變形時的幾何方程桿軸轉(zhuǎn)角截面轉(zhuǎn)角2.慣性力矩的計算單位長度上的慣性力矩3.運動方程4.物理方程5.方程整理幾何方程:物理方程:運動方程:對于等截面桿:對于等截面細長桿:四.考慮阻尼影響時的彎曲振動方程外阻尼力內(nèi)阻尼力1.粘滯阻尼
2.滯變阻尼不計阻尼時計阻尼時習題:1.求剪切桿的運動方程。
2.求拉壓桿的運動方程。一.運動方程及其解邊界條件xyxyxy幾何邊界條件力邊界條件混合邊界條件初始條件已知函數(shù)5.2自由振動分析設(shè)方程的特解為代入方程,得方程(1)的通解為運動方程的特解為運動方程的通解由特解的線性組合確定設(shè)方程(2)的特解為代入方程(2),得方程(2)的通解為或二.振型與頻率振型方程xy頻率方程振型18--4BEAMFLEXURE:ORTHOGONALITYOFVIBRATIONMODESHAPESThevibrationmodeshapesderivedforbeamswithdistributedpropertieshaveorthogonalityrelationshipsequivalenttothosedefinedpreviouslyforthediscrete-parametersystems,whichcanbedemonstratedinessentiallythesame—byapplicationofBetti'slaw.ConsiderthebeamshowninFig.18--1.Forthisdiscussion,thebeammayhavearbitrarilyvaryingstiffnessandmassalongitslength,anditcouldhavearbitrarysupportconditions,althoughonlysimplesupportsareshown.Twodifferentvibrationmodes,mandn,areshownforthebeam.Ineachmode,thedisplacedshapeandtheinertialforcesproducingthedisplacementsareindicated.Betti'slawappliedtothesetwodeflectionpatternsmeansthattheworkdonebytheinertialforcesofmodenactingonthedeflectionofmodemisequaltotheworkoftheforcesofmodemactingonthedisplacementofmoden;thatis,(18-31)(18-34)Thefirsttwotermsinthisequationrepresenttheworkdonebytheboundaryverticalsectionforcesofmodenactingontheenddisplacementsofmodemandtheworkdonebytheendmomentsofmodenonthecorrespondingrotationsofmodem.Forthestandardclamped--,hinged--,orfree--endconditions,thesetermswillvanish.However,theycontributetotheorthogonalityrelationshipifthebeamhaselasticsupportsorifithasalumpedmassatitsend;thereforetheymustberetainedintheexpressionwhenconsideringsuchcases.(18-35)(18-40)三.振型的正交性振型可看作是慣性力幅值作為靜荷載所引起的靜力位移曲線。由虛功互等定理振型對質(zhì)量的正交性表達式物理意義為i振型上的慣性力在j振型上作的虛功為零。由變形體虛功定理振型對剛度的正交性表達式當體系中有質(zhì)量塊、彈簧等時的情況Clough:振型對剛度的正交性表達式5.3受迫振動一.振型分解法設(shè)方程的解為運動方程為代入方程,得設(shè)注意到方程兩端乘以并積分----振型j的廣義質(zhì)量----振型j的廣義荷載方程兩端乘以并積分----振型j的廣義質(zhì)量----振型j的廣義荷載令----j振型阻尼比內(nèi)力計算若外力是集中力或集中力偶例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅。解:二.初速度、初位移引起的振動設(shè)初位移、初速度已知,求位移反應(yīng)。設(shè)方程的解為由和確定例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:例:桿件落到支座時的速度為v0,不反彈,不計阻尼,求位移。解:練習題:振型分解法求圖示體系桿端轉(zhuǎn)角的穩(wěn)態(tài)幅值,不計阻尼。三.簡諧荷載作用下的直接解法運動方程為設(shè)特解為若梁是等截面梁,且q(x)為常數(shù)令例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,不計阻尼。已知:解:例:試求圖示梁跨中點穩(wěn)態(tài)振幅,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中國科學(xué)院科技戰(zhàn)略咨詢研究科技發(fā)展戰(zhàn)略研究所特別研究助理(博士后)招聘1人考試參考題庫及答案解析
- 2026內(nèi)蒙古赤峰市寧城縣八里罕中學(xué)招聘公益性崗位人員1人筆試備考題庫及答案解析
- 2026廣西河池市羅城仫佬族自治縣農(nóng)業(yè)農(nóng)村局招聘就業(yè)見習人員3人考試參考試題及答案解析
- 醫(yī)用生物化學(xué)檢測與分析儀器:精準診斷的核心支撐體系全面解析
- 2026年金華市青少年宮公開招聘外聘(兼職)教師33人筆試備考試題及答案解析
- 2026重慶某國有企業(yè)員工招聘2人考試參考題庫及答案解析
- 2026年甘肅蘭州永登縣婦幼保健院招聘筆試備考題庫及答案解析
- 2026南昌市南鋼學(xué)校教育集團勞務(wù)派遣教師招聘考試備考題庫及答案解析
- 2026湖南懷化市溆浦縣社會保險服務(wù)中心公益性崗位招聘2人考試備考試題及答案解析
- 大連市西崗區(qū)2026年教育系統(tǒng)自主招聘應(yīng)屆畢業(yè)生備考題庫有答案詳解
- 斷骨增高手術(shù)護理教程
- 2025秋季學(xué)期國開電大法學(xué)本科《國際私法》期末紙質(zhì)考試簡述題題庫珍藏版
- 2025年道教傳度考試題及答案
- 微機電系統(tǒng)(MEMS)技術(shù) 柔性微機電器件循環(huán)彎曲變形后電氣特性測試方法 編制說明
- 小區(qū)充電樁轉(zhuǎn)讓合同范本
- (2025年標準)國債使用協(xié)議書
- 如何說孩子才會聽-怎么聽孩子才肯說
- 2025年南京市事業(yè)單位教師招聘考試體育學(xué)科專業(yè)知識試卷(秋季篇)
- 巴林特小組與團體心理輔導(dǎo)對護士共情能力提升的影響
- 2021年普通高等學(xué)校招生全國統(tǒng)一考試英語試卷(天津卷)含答案
- 2025年勞動法試題及答案題庫(附答案)
評論
0/150
提交評論