版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
內(nèi)蒙古包頭市北方重工業(yè)集團有限公司第三中學2023-2024學年數(shù)學高一上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.函數(shù)的零點個數(shù)為()A. B.C. D.2.在長方體中,,則異面直線與所成角的大小是A. B.C. D.3.已知函數(shù),則()A.2 B.5C.7 D.94.若兩個非零向量,滿足,則與的夾角為()A. B.C. D.5.酒駕是嚴重危害交通安全的違法行為.為了保障交通安全,根據(jù)國家有關規(guī)定:血液中酒精含量達到的駕駛員即為酒后駕車,及以上認定為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量會以每小時30%的速度減少,那么他至少要經(jīng)過()小時才能駕駛.(參考數(shù)據(jù):,)A.1 B.3C.5 D.76.“角小于”是“角是第一象限角”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.函數(shù)零點的個數(shù)為()A.4 B.3C.2 D.08.設全集,,,則()A. B.C. D.9.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},則M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}10.若冪函數(shù)f(x)的圖象過點(16,8),則f(x)<f(x2)的解集為A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知角α∈(-,0),cosα=,則tanα=________.12.如圖,在三棱錐中,已知,,,,則三棱錐的體積的最大值是________.13.正三棱錐中,,則二面角的大小為__________14.________.15.已知直三棱柱的6個頂點都在球O的球面上,若,則球O的半徑為________三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知定理:“若、為常數(shù),滿足,則函數(shù)的圖象關于點中心對稱”.設函數(shù),定義域為.(1)試求的圖象對稱中心,并用上述定理證明;(2)對于給定的,設計構(gòu)造過程:、、、.如果,構(gòu)造過程將繼續(xù)下去;如果,構(gòu)造過程將停止.若對任意,構(gòu)造過程可以無限進行下去,求的取值范圍.17.已知圓過,,且圓心在直線上(1)求此圓的方程(2)求與直線垂直且與圓相切的直線方程(3)若點為圓上任意點,求的面積的最大值18.已知tanα=,求下列各式的值(1)+;(2);(3)sin2α-2sinαcosα+4cos2α.19.設函數(shù).(1)求的最小正周期和最大值;(2)求的單調(diào)遞增區(qū)間.20.已知函數(shù)(1)求函數(shù)圖象的相鄰兩條對稱軸的距離;(2)求函數(shù)在區(qū)間上的最大值與最小值,以及此時的取值21.如圖,在扇形OAB中,半徑OA=1,圓心角C是扇形弧上的動點,矩形CDEF內(nèi)接于扇形,且OE=OF.記∠AOC=θ,求當角θ為何值時,矩形CDEF的面積S最大?并求出這個最大的面積.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】當時,令,故,符合;當時,令,故,符合,所以的零點有2個,選B.2、C【解析】連接為異面直線與所成角,幾何體是長方體,是,,異面直線與所成角的大小是,故選C.3、D【解析】先求出,再求即可,【詳解】由題意得,所以,故選:D4、C【解析】根據(jù)數(shù)量積的運算律得到,即可得解;【詳解】解:因為,所以,即,即,所以,即與的夾角為;故選:C5、C【解析】設經(jīng)過個小時才能駕駛,則,再根據(jù)指數(shù)函數(shù)的性質(zhì)及對數(shù)的運算計算可得.詳解】設經(jīng)過個小時才能駕駛,則,即由于在定義域上單調(diào)遞減,∴∴他至少經(jīng)過5小時才能駕駛.故選:C6、D【解析】利用特殊值法結(jié)合充分、必要條件的定義判斷可得出結(jié)論.【詳解】若角小于,取,此時,角不是第一象限角,即“角小于”“角是第一象限角”;若角是第一象限角,取,此時,,即“角小于”“角是第一象限角”.因此,“角小于”是“角是第一象限角”的既不充分也不必要條件.故選:D.7、A【解析】由,得,則將函數(shù)零點的個數(shù)轉(zhuǎn)化為圖象的交點的個數(shù),畫出兩函數(shù)的圖象求解即可【詳解】由,得,所以函數(shù)零點的個數(shù)等于圖象的交點的個數(shù),函數(shù)的圖象如圖所示,由圖象可知兩函數(shù)圖象有4個交點,所以有4個零點,故選:A8、B【解析】先求出集合B的補集,再求【詳解】因為,,所以,因為,所以,故選:B9、B【解析】先化簡集合N,再進行交集運算即得結(jié)果.【詳解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故選:B.10、D【解析】先根據(jù)冪函數(shù)f(x)的圖象過點(16,8)求出α=>0,再根據(jù)冪函數(shù)的單調(diào)性得到0<x<x2,解不等式即得不等式的解集.【詳解】設冪函數(shù)的解析式是f(x)=xα,將點(16,8)代入解析式得16α=8,解得α=>0,故函數(shù)f(x)在定義域是[0,+∞),故f(x)在[0,+∞)遞增,故,解得x>1.故選D【點睛】(1)本題主要考查冪函數(shù)的概念和解析式的求法,考查冪函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的掌握水平和分析推理能力.(2)冪函數(shù)在是增函數(shù),,冪函數(shù)在是減函數(shù),且以兩條坐標軸為漸近線.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】利用同角三角函數(shù)的平方關系和商數(shù)關系,即得解【詳解】∵α∈(-,0),cosα=,∴sinα=-=-,∴tanα==-.故答案為:12、【解析】過作垂直于的平面,交于點,,作,通過三棱錐體積公式可得到,可分析出當最大時所求體積最大,利用橢圓定義可確定最大值,由此求得結(jié)果.【詳解】過作垂直于的平面,交于點,作,垂足為,,當取最大值時,三棱錐體積取得最大值,由可知:當為中點時最大,則當取最大值時,三棱錐體積取得最大值.又,在以為焦點的橢圓上,此時,,,,三棱錐體積最大值為.故答案為:.【點睛】關鍵點點睛:本題考查三棱錐體積最值的求解問題,解題關鍵是能夠?qū)⑺篌w積的最值轉(zhuǎn)化為線段長度最值的求解問題,通過確定線段最值得到結(jié)果.13、【解析】取中點為O,連接VO,BO在正三棱錐中,因為,所以,所以=,所以14、【解析】.考點:誘導公式.15、【解析】根據(jù)直角三角形的外接圓的直徑是直角三角形的斜邊,結(jié)合球的對稱性、勾股定理、直三棱柱的幾何性質(zhì)進行求解即可.【詳解】因為,所以三角形是以為斜邊的直角三角形,因此三角形的外接圓的直徑為,圓心為.因為,所以,在直三棱柱中,側(cè)面是矩形且它的中心即為球心O,球的直徑是的長,則,所以球的半徑為故答案為:【點睛】本題考查了直三棱柱外接球問題,考查了直觀想象能力和數(shù)學運算能力.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1),證明見解析;(2).【解析】(1)計算出的值,由此可得出結(jié)論;(2)分、、三種情況討論,求出函數(shù)的值域,根據(jù)題意可得出關于實數(shù)的不等式組,由此可求得實數(shù)的取值范圍.【詳解】(1),由已知定理得,的圖象關于點成中心對稱;(2),當時,若,由基本不等式可得,若,由基本不等式可得.此時,函數(shù)的值域為,當時,的值域為,當時,的值域為,因為構(gòu)造過程可以無限進行下去,對任意恒成立或,由此得到.因此,實數(shù)的取值范圍是.【點睛】關鍵點點睛:本題考查函數(shù)的新定義問題,解本題的關鍵在于對實數(shù)的取值進行分類討論,求出函數(shù)的值域,根據(jù)題意得出所滿足的不等式組求解.17、(1)(2)或(3)【解析】(1)一般利用待定系數(shù)法,先求出圓心的坐標,再求出圓的半徑,即得圓的方程.(2)先設出直線的方程,再利用直線和圓相切求出其中的待定系數(shù).(3)一般利用數(shù)形結(jié)合分析解答.當三角形的高是d+r時,三角形的面積最大.【詳解】(1)易知中點為,,∴的垂直平分線方程為,即,聯(lián)立,解得則,∴圓的方程為(2)知該直線斜率為,不妨設該直線方程為,由題意有,解得∴該直線方程為或(3),即,圓心到的距離∴點睛:本題的難點在第(3)問方法的選擇,選擇數(shù)形結(jié)合分析解答比較方便.數(shù)形結(jié)合是高中數(shù)學里一種重要的數(shù)學思想,在解題中要靈活運用.18、(1)(2)(3)【解析】(1)+=+=+=.(2)===.(3)sin2α-2sinαcosα+4cos2α====.19、(1)最小正周期,最大值為;(2).【解析】把化簡為,(1)直接寫出最小正周期和最大值;(2)利用正弦函數(shù)的單調(diào)性直接求出單調(diào)遞增區(qū)間.【詳解】(1)的最小正周期;最大值為;(2)要求的單調(diào)遞增區(qū)間,只需,解得:,即的單調(diào)遞增區(qū)間為.20、(1);(2)時,取得最大值為3;當時,取得最小值為【解析】利用倍角公式降冪,再由輔助角公式可把函數(shù)化簡為(1)求出函數(shù)的半周期得答案;(2)由的范圍求出的范圍,利用正弦函數(shù)的性質(zhì)可求原函數(shù)的最值及使原函數(shù)取得最值時的值詳解】.(1)函數(shù)圖象的相鄰兩條對稱軸的距離為;(2),∴當,即時,取得最大值為3;當,即時,取得最小值為【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)市場調(diào)研與分析制度
- 2026河南建筑職業(yè)技術學院招聘30人參考題庫附答案
- 交通宣傳教育普及制度
- 2026湖北省定向?qū)ν饨?jīng)濟貿(mào)易大學選調(diào)生招錄參考題庫附答案
- 2026湖南現(xiàn)代環(huán)境科技股份有限公司部分崗位招聘3人考試備考題庫附答案
- 2026福建省面向中央財經(jīng)大學選調(diào)生選拔工作參考題庫附答案
- 2026福建福州市閩江學院附屬中學招聘1人備考題庫附答案
- 2026西安高新區(qū)第四完全中學招聘備考題庫附答案
- 2026貴州雷山縣融媒體中心招聘新聞采編記者2名參考題庫附答案
- 公共交通安全事故處理制度
- 《TICW26-202366kV到500kV電纜線路交叉互聯(lián)及接地用電纜》
- 消防噴淋改造協(xié)議書范本
- 《燙金工藝技術要點》課件
- 兩人工地合作協(xié)議書范文范本
- 2024年新人教版四年級數(shù)學上冊《第6單元第7課時 商的變化規(guī)律》教學課件
- 《護理學基礎》-15-標本采集
- HG∕T 3792-2014 交聯(lián)型氟樹脂涂料
- 型鋼斜拋撐支護方案
- 英文繪本故事Brown.Bear.Brown.Bear.What.Do.You.See
- 高一下學期期中語文試題匯編:寫作
- (高清版)JTGT 3371-01-2022 公路沉管隧道設計規(guī)范
評論
0/150
提交評論