版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AutomatingCommonSenseReasoningGopalGuptaDepartmentofComputerScienceTheUniversityofTexasatDallasPart0:AI/KRR/Introduction
PartI:CommonSenseReasoning&AnswerSetProgramming(ASP)
PartII:ExecutionofASPprograms
PartIII:ApplicationsArtificialIntelligenceIntelligentreasoningbycomputershasbeenagoalofcomputerscientistseversincecomputerswerefirstinventedinthe1950s.Intelligencehastwocomponents:Acquiringknowledge(learning):automateitmachinelearningApplyingknowledgethatisknown(reasoning)automateitautomatedreasoningOurfocus:automatedreasoningReasoningisessential:machinelearningalgorithmslearnrulesthathavetobeemployedforreasoningMachinelearningoversold?:Usedinmanyplaceswherereasoningwouldsuffice;reasoningabilityiscriticalashumansbothlearnandreason.KnowledgeRepresentationandReasoningKnowledgerepresentationandreasoningNeedalanguagetorepresentknowledge[KR]Needalanguagetoprocessthisknowledgeandqueryit[R]IdealifthelanguageforKRandRisthesame:KRlanguageis“executable”(i.e.,hasadeclarativeandanoperationalsemantics)Hornclauses(logicprogramming)constitutesuchalanguageKnowledgeisrepresentedasfactsandrules:
p.pisapropositionthatisunconditionallytrue
q:-b1,b2,b3,….,bn.qisapropositionthatisconditionallytrue
Aruleisanimplicationb1
?b2
?b3
?….?bn
qQueriesareoftheform?-b1,b2,b3,….,bn.answeredviaSLDresolution
queryansweringequalsarefutationproof,i.e.,showb1
?b2
?b3
?….?bn
falseManyotheralternatives:firstorderlogic,descriptionlogic,semanticnet,…
LogicProgramming(Prolog)Facts:father(jim,john). mother(mary,john).father(john,rob). mother(sue,rob).…. .…Rules:parent(X,Y)ifmother(X,Y).parent(X,Y)if
father(X,Y).grandparent(X,Y)ifparent(X,Z)&parent(Z,Y).anc(X,Y)ifparent(X,Y).anc(X,Y)ifparent(X,Z)&anc(Z,Y).Queries:?-anc(jim,rob).?-anc(A,rob).LogicProgramming(Prolog)Facts:father(jim,john). mother(mary,john).father(john,rob). mother(sue,rob).…. .…Rules:parent(X,Y)?mother(X,Y).parent(X,Y)?father(X,Y).grandparent(X,Y)?parent(X,Z)?parent(Z,Y).anc(X,Y)?parent(X,Y).anc(X,Y)?parent(X,Z)?anc(Z,Y).Queries:?-anc(jim,rob).?-anc(A,rob).LogicProgramming(Prolog)Facts:father(jim,john). mother(mary,john).father(john,rob). mother(sue,rob).…. .…Rules:parent(X,Y):-mother(X,Y).parent(X,Y):-father(X,Y).grandparent(X,Y):-parent(X,Z),parent(Z,Y).anc(X,Y):-parent(X,Y).anc(X,Y):-parent(X,Z),anc(Z,Y).Queries:?-anc(jim,rob).?-anc(A,rob).PartI:CommonSenseReasoning&AnswerSetProgramming
CommonSenseReasoningStandardLogicProg.failsatperforminghuman-stylecommonsensereasoningInfact,mostformalismshavefailed;problem:monotonicityCommonsensereasoningrequires:Non-monotonicity:thesystemcanreviseitsearlierconclusioninlightofnewinformation(contradictoryinformationdiscoveredlaterdoesnotbreakdownthingsasinclassicallogic)IfTweetyisabird,itcanfly;conclusiontoberetractedifTweetyisfoundtobeapenguinDrawconclusionsfromabsenceofinformation;humansusethis[defaultreasoning]patternallthetime:Can’ttellifitisrainingoutside.IfIseenooneholdinganumbrella,soitmustnotberainingYoutextyourfriendinthemorning;hedoesnotrespond;normallyherespondsrightaway.Youmayconclude:hemustbetakingashower.Possibleworldssemantics:beabletoworkwithmultipleworlds(non-inductivesemantics)Commonsensereasoningrequiresthatweareabletohandlenegationasfailure&supportpossibleworldsemantics
ClassicalNegationvsNegationasFailureClassicalnegation(CN)representedas-pe.g,-sibling(john,jim)%statesthatJohnandJimarenotsiblingsAnexplicitproofoffalsehoodofpredicatepisneeded-murdered(oj,nicole)holdstrueonlyifthereisanexplicitproofofOJ’sinnocence(seeninBostonairport,Nicole’sbodywasfoundinLA)Negationasfailure(NAF)representedasnot(p)e.g.,notsibling(john,jim)%statesthatnoevidenceJohnandJimaresiblingsWetrytoproveapropositionp,
ifwefail,weconcludenot(p)istrueNoevidenceofpthenconcludenot(p)not(murdered(oj,nicole))holdstrueifwefailtofindanyproofthatOJkilledNicole
FAILTOPROVE(NAF)vsEXPLICITLY
PROVINGFALSEHOOD(CN)FailureofClassicalMethodsforCommonSenseReasoningGivenasetofaxiomsA1,A2,…,An,adecisionprocedurebasedonclassicallogicgivesusamethodforprovingatheoremT.A1,A2,…,An╞
TWhatiftheproofofTfails(i.e.,wegetstuck&cannotprogress)?ClassicallogicbaseddecisionproceduresdonotgiveusanyinsightwhenaprooffailsInmanycircumstanceswemaybeabletoconcludethattheproofofTisnotpossibleandso
Tshouldhold.
Mostofcommonsensereasoningisofthisform:IfwefailtoproveT(now),thenTmustbefalse(thoughTmaybecometruelater)Dualalsotrue:ifweproveT(now),thenTistrue(thoughitmaybecomefalselater)FailureofClassicalReasoningMethodsforCSRExample:Transitiveclosure:edge(a,b).edge(b,c).edge(f,g).reach(X,Y):-edge(X,Y).reach(X,Y):-edge(X,Z),reach(Z,Y).?-reach(a,f).Queryfails(noproof);Underclassicaltheoremprovingwecan’tconcludethatfisunreachablefromnodea.Needaxiomsforunreachability,onlythenwecanconclude–reach(a,f).Thatis,wehavetoexplicitlydefinerulesfor–reach(X,Y).Failureisnotoflogicorthedecisionprocedure,ratherhowweinterprettherules.Interpretimplicationsascausalrelations:AifBmeansAiffBreach(X,Y)?(edge(X,Y)
(edge(X,Z),reach(Z,Y))).NowwithNAFwecanwrite:unreachable(X,Y):-notreachable(X,Y).Note:whenhumanswrite“ifAthenB”,theymean“AiffB”mostofthetime;E.g.:breaks_object:-drop_objectweautomaticallymeannot_breaks_object:-not_drop_object.
abcfgNegationasFailure(NAF)HumansuseNAFallthetime;however,usingNAFdoesmakelifedifficultHard(forhumans)todealwithnestednegation:WhoallwillgotoMexico?Codethisas:
p:-nots.
s:-notr. r:-notp. r:-nots.Whatisthesemanticsofthisprogram?Individualruleseasytounderstand;extremelyhardtounderstandwhattheprogrammeansasawholePaulwillgotoMexicoifSallywillnotgotoMexicoSallywillgotoMexicoifRobwillnotgotoMexico.RobwillgotoMexicoifPaulwillnotgotoMexico.RobwillgotoMexicoifSallywillnotgotoMexico.AnswerSetProgramming(ASP)PrologextendedwithNAF;Rulesoftheform:
p:-
a1,…,am,notb1,…,notbn.m,n≥0(rule)
p.(fact)
ASPisapopularformalismfornonmonotonicreasoningAnotherreading:addptotheanswerset(modeloftheprogram)ifa1,…,am
areintheanswersetandb1,…,bnarenotTherulecouldtakemoregeneralform
p:-
a1,…,am,notb1,…,notbn,-c1,...,-ck,not-d1,…,not-di
m,n,k,i≥0(rule)
LogicprogramswithNAFgoalsinthebodyarecallednormallogicprogramsApplicationsofASPtoKR&R,planning,constrainedoptimization,etc.Semantics:lfpofaresidualprogramobtainedafter“Gelfond-Lifschitz”transformPopularimplementations:Smodels,DLV,CLASP,etc.Morethan30yearsofresearchinvestedAnswerSetProgrammingAnswersetprogramming(ASP)BasedonPossibleWorldsandStableModelSemanticsGivenananswersetprogram,finditsmodelsModel:assignmentoftrue/falsevaluetopropositionstomakeallformulastrue.ModelsarecalledanswersetsCapturesdefaultreasoning,non-monotonicreasoning,constrainedoptimization,exceptions,weakexceptions,preferences,etc.,inanaturalwayBetterwaytobuildautomatedreasoningsystems&expertsystemsCaveatsp?a,b.reallyistakentobep?a,b.Weareonlyinterestedinsupportedmodels:ifpisintheanswerset,itmustbeintheLHSofa‘successful’ruleTherulep:-q.(qp)hasamodelinwhichqisfalseandpistrue;suchmodelsarenotinterestingWhenwewritep:-q.wearestatingthatpistrueifqistrue(qbeingtruesupportspbeingtrue)Human-styleCommonSenseReasoningWhyhavewefailedtomodelhuman-stylecommonsensereasoning?NAF+anotherreason:multiplepossibleworldsFrege&Russell:Fregediscovers(na?ve)settheorythatRussellfindsaproblemwith(Russell’sparadox).Problemiscausedbycircularity;Russell’ssolution:bancircularityRussell:henceforth,everystructure(includingsets)mustbeinductive,i.e.,startfromthesmallestelementandthensuccessivelybuildlargerelementsfromit;anythingnon-inductive(coinductive)isbanishedfromthelanguage.Thewholemathematics/logicenterpriseobsessedwithonlyhavinginductivestructuresThus,anytheoryinvolvingpredicatesmusthaveaninductivesemantics(singlemodel)However,circularityariseseverywhereinhumanexperiencealongwiththeoriesthathavemultiplemodels(possibleworldssemantics).
jack_eats_food:-jill_eats_food.
jill_eats_food:-jack_eats_food.Twopossibleworlds:botheatornoneeat;inductivesemantics:noneeatAutomatingCommonSenseReasoningIfweautomateCSR,wecanautomatethehumanthoughtprocessModelanyintelligenttaskthathumanscanaccomplishAchieveartificialgeneralintelligence(AGI),atleastOurgoalistosimulateanunerringhumanSofar:Weneednegation-as-failuretomodelthefactthathumansoperateinaworldwherelotofstuffisunknownWeneedpossibleworldsemantics,ashumansdonotalwaysreasoninductively,i.e.,humanscanreasonwithmultipleworldssimultaneously;eachofthesemultipleworldshastobeconsistentthough(coinductive)AnswerSetProgrammingprovidesboththesefeatures,henceisanexcellentcandidateformodelingcommonsensereasoningASPGivenananswersetprogram,wewanttofindouttheknowledge(propositions)thatitentails(answersets)Forexample,giventheprogram:p:-notq.q:-notp.thepossibleanswersetsare:
1.{p}i.e.,p=true,q=false
2
2.{q}i.e,q=true,p=falseComputedviaGelfond-LifschitzMethod(Guess&Check)GivenananswersetS,foreachpS,deleteallruleswhosebodycontains“notp”;deleteallgoalsoftheform“notq”inremainingrulesComputetheleastfixpoint,L,oftheresidualprogramIfS=L,thenSisananswersetp=TomteachesDBq=MaryteachesDBTwoworlds:TomteachesDB,MarydoesnotMaryteachesDB,TomdoesnotFindingtheAnswerSetConsidertheprogram:p:-notq.t.r:-t,s.q:-notp,r.s.h:-p,noth.ApplytheGLMethod--Ifxinanswerset,deleteallruleswithnotx inbody--Next,removeallnegatedgoalsfromthe remainingprogram--FindtheLFPoftheprogram:--Initialguess{p,r,t,s}≠{p,r,t,s,h} so{p,r,t,s}isnotastablemodel.{p,r,t,s,h}Is{p,r,t,s}theanswerset?FindingtheAnswerSetConsidertheprogram:p:-notq.t.r:-t,s.q:-notp,r.s.h:-p,noth.ApplytheGLMethod--Ifxinanswerset,deleteallruleswithnotx inbody--Next,removeallnegatedgoalsfromthe remainingprogram--FindtheLFPoftheprogram:--Initialguess{q,r,t,s}=LFP so{q,r,t,s}isastablemodel.{q,r,t,s}Is{q,r,t,s}theanswerset?r.ASP
{p,a}{}{q}{a}{a}{p,a}{b,d}nonenone{r}{p,r}ASP:ExamplesConsiderthefollowingprogram,A:p:-notq.t.r:-t,s.q:-notp.s.Ahas2answersets:{p,r,t,s}&{q,r,t,s}.NowsupposeweaddthefollowingruletoA:h:-p,noth.(falsifyp)Onlyoneanswersetremains:{q,r,t,s}Consideranotherprogram:
p:-nots.s:-notr.r:-notp.r:-nots.Whataretheanswersets?{p,r}PaulwillgotoMXifSallywillnotgotoMXSallywillgotoMXifRobwillnotgotoMX.RobwillgotoMXifPaulwillnotgotoMX.RobwillgotoMXifSallywillnotgotoMX.h:-p,noth.EvenloopscreatemultipleworldsOddloopskillworldsConstraintsTherulesthatcauseproblemareoftheform:
h:-p,q,r,noth.thatimplicitlydeclaresp?q?
rtobefalseASPalsoallowsrulesoftheform(headlessruleorconstraint)::-p,q,r.whichassertsthattheconjunctionofp,q,andrshouldbefalse.Thetwoareequivalent,exceptthatinthefirstcase,nothmaybecalledindirectly:h:-p,q,s.s:-r,noth.ConstraintsareresponsiblefornonmonotonicbehaviorAruleoftheformp:-notpwrecksthewholeknowledgebaseaspnotphasnomodel.
AnswerSetProgrammingAnswersetprogrammingsubsumesHornclauselogicprogrammingGenerate&Testparadigmrealizedviaevenloopsandoddloops/constraintsEvenloops:p:-notq.q:-notp.Oddloops/constraints:h:-r,noth.OR:-r.Evenloopscreate(multiple)worlds,oddloopskillworldsConsiderp:-notq.
q:-notp.
:-p.Evenloopscreatestwoworlds:{p,notq},{q,notp}Constraintkillsoneofthem,soonlyoneworldremains:{q,notp}
SlidefromSonTranofNMSUSlidefromSonTranofNMSUSlidefromChitaBaral(ASU)DefaultsandExceptions
AS={flies(tweety),flies(sam)}Ourreasoningisaggressive:ifwedon’tknowanythingaboutabird,itcanflyAS={flies(tweety))}flies(sam)doesnotholdanymoreClosedWorldAssumption(CWA)
CWAaboutbird,penguin,abCWA:ifwefailtoprove,thentakeitasadefiniteproofoffalsehoodHumansuseCWAallthetime;wecanmakeitexplicitinASPwithclassicalnegationOpenWorldAssumption(OWA)
CWAaboutbird,penguin,abOWAaboutfliesOWA==NoCWA;Butnowwecanbemoreselective:CWAforsomeandOWAforothers.SlidefromChitaBaral(ASU)OpenWorldAssumption
Next,removeCWAaboutbird,penguin,abAssumeourinformationabouttheseconceptsisincompleteDoesetfly?AnswerisYESButnowthatwenolongerhaveCWAaboutbeingapenguin,it’spossiblethatetmightbeapenguin.Wenowneedtobemoreconservativeinourreasoning.flies(et)willnowfail,asIfailtoestablishthatetisnotapenguinDoesetflynow?:AnswerisNOSlidefromChitaBaral(ASU)DefaultsandExceptionsTosummarize
Aggressive
Conservativeflies(X):-bird(X),notab(X).ab(X):-not-penguin(X).penguin(tweety).bird(tweety).bird(sam).-penguin(X):--bird(X).?-flies(tweety).Ans:no?-flies(sam).Ans:noflies(X):-bird(X),notab(X).ab(X):-penguin(X).penguin(tweety).bird(tweety).bird(sam).-penguin(X):-notpenguin(X).?-flies(tweety).Ans:no?-flies(sam).Ans:yesSlidefromC.Baral(ASU)Toputallthisinperspective,considerthecollegeadmissionprocess:SincewehavenoinformationaboutJohnbeingspecialor
special,botheligible(john)and
eligible(john)fail.SoJohnwillhavetobeinterviewedUniversityAdmissionASPforCommonSenseReasoningASPallowshuman-stylecommonsensereasoningtobemodeled(duetoinclusionofnegationasfailure)Negationasfailureallowsustoignoreunnecessaryinformationthatisnotrelevantatthemoment(defaults&exceptions).ASPallowsustotakeactionspredicatedonlackofinformation:use_gps_system(X):-notdirections_known(X).ASPgivesusahierarchyof(un)certaintythatwehumansemploy,givensomepropositionp(e.g.,p=itisrainingnow):pdefinitelytrue:ppmaybetrue:not–p(possiblep)punknown:not–p¬ppmaybefalse:notp(noevidenceofp)pdefinitelyfalse:-pASPhaspossibleworldsemanticswheremultipleworldscanexistAsaresult:ASPallowshumanknowledgeandreasoningtobemodeledfaithfully.ab(X):-not-penguin(X)
ab(X):-possiblyXisapenguinGenerally,wehumansdonotemployprobabilitiesinourdaytodaycommonsensereasoningIncompleteInformationConsiderthecoursedatabase:BydefaultprofessorPdoesnotteachcourseC,ifteach(P,C)isabsent.Theexceptionsarecourseslabeled“staff”.Thus:
?
teach(P,C):-notteach(P,C),notab(P,C).ab(P,C):-teach(staff,C).Queries
?-teach(mike,pl)and
?-?
teach(mike,pl)
willbothfail:wereallydon’tknowifmiketeachesplornot(unknown)ProfessorCoursemikeaisamdbstaffplRepresentedas:
teach(mike,ai).teach(sam,db).teach(staff,pl).CombinatorialProblems:ColoringSlidefromS.Tran(NMSU)CombinatorialProblems:ColoringSlidefromS.Tran(NMSU)CombinatorialProblems:N-QueensSlidefromS.Tran(NMSU)CombinatorialProblems:N-QueensSlidefromS.Tran(NMSU)PossibleWorldsPeoplecantalk.(inallworlds)talk(X):-people(X).Non-humananimalscan'ttalk.(inrealworld)-talk(X):-non_human_animal(X),rw.Human-likecartooncharacterscantalk.(incartoonworld)talk(X):-human_like_cc(X),cw.Fishcanswim.(inallworlds)swim(X):-fish(X).Afishisanon-humananimal.(inrealworld)non_human_animal(X):-fish(X),rw.Nemoisahuman_likecartooncharacter.(incartoonworld)human_like_cc(nemo):-cw.Nemoisafish.(inallworlds)fish(nemo).cw:-notrw.rw:-notcw.Cannemotalk??-talk(nemo).Cannemoswim??-swim(nemo).40SupposeMarybelievesthatJohnwasinHollandParksomemorningandthatHollandParkisinLondon.ThenMarycandeductivelyreasonfromthesebeliefs,toconcludethatJohnwasinLondonthatmorning.Sothereasoningcannotbeattacked.However,perfectionremainsunattainablesincetheargumentisstillfallible:itsgroundsmayturnouttobewrong.Forinstance,JanmaytellusthathemetJohninAmsterdamthatmorningaroundthesametime.WenowhaveareasonagainstMary'sbeliefthatJohnwasinHollandParkthatmorning,sincewitnessesusuallyspeakthetruth.Canweretainourbelieformustwegiveitup?TheanswertothisquestiondetermineswhetherwecanacceptthatJohnwasinLondonthatmorning.MaybeMaryoriginallybelievedthatJohnwasinHollandParkforareason.MaybeMarywentjogginginHollandParkandshesawJohn.WethenhaveareasonsupportingMary'sbeliefthatJohnwasinHollandParkthatmorning,sinceweknowthataperson'ssensesareusuallyaccurate.Butwecannotbesure,sinceJantoldusthathemetJohninAmsterdamthatmorningaroundthesametime.PerhapsMary'ssensesbetrayedherthatmorning?ButthenwehearthatJanhasareasontolie,sinceJohnisasuspectinarobberyinHollandParkthatmorningandJanandJohnarefriends.WethenconcludethatthebasisforquestioningMary'sbeliefthatJohnwasinHollandParkthatmorning(namely,thatwitnessesusuallyspeakthetruthandJanwitnessedJohninAmsterdam)doesnotapplytowitnesseswhohaveareasontolie.SoourreasoninsupportofMary'sbeliefisundefeatedandweacceptit.RepresentingKnowledgewithASP41WemapvariousstatementsintoASP,e.g.,theargument(rule)forspeakingtruth:
speaks_truth(X,Y):-person(X),person(Y),observer(E,X),theme(E,Y),notab_speaks_truth(X,Y).
ab_speaks_truth(X,Y):-may_lie(X,Y).may_lie(X,Y):-person(X),person(Y),not-lie(X,Y).
-lie(X,Y):-person(X),person(Y),notconflict_interest(X,Y).
conflict_interest(X,Y):-friends(X,Y),crime_suspect(Y),notab_conflict_interest(X).
crime_suspect(X):-person(X),robbery_suspect(X),notab_crime_suspect(X).LikewiseforMary’sinfirmityaccurate_senses(X):-person(X),notab_accurate_senses(X).
ab_accurate_senses(X,sense):-person(X),age(X,A),A=old.RepresentingKnowledgewithASPexception42Basedontheassumptionswemake,wecanprovedifferentclaims:Maryisinfirmandhaspooreyesight#abducibleage(mary,old).JanandJohnarefriends#abduciblefriends(john,jan).Johnisarobberysuspect#abduciblerobbery_suspect(john).Assumptionsaremodeledasabducibles(abductivereasoning)Givenpqandanobservationq,weabduce(assume)thatpistrueNowclaimscanbeestablishedautomaticallywithrequisiteassumptions?-claim(john_location_unknown).Assumptions:age(mary,old)?friends(jan,john)?robbery_suspect(john)?-claim(john_not_in_london).
Assumptions:age(mary,old)?notfriends(jan,john).Assumptions:age(mary,old)?friends(jan,john)?notrobbery_suspect(john)?-claim(john_in_london).Assumptions:friends(jan,john)?robbery_suspect(john)Assumptions:age(mary,B|B
old)?friends(jan,john)?robbery_suspect(john)RepresentingKnowledgewithASP43s(CASP)canproducejustificationtree(prooftree)foragivenclaim:
JohnisinLondonattime8AM,becauseMarysawJohnat7:45AM,andJohnwasatholland_parkat7:45AM,andholland_parkisinlondon,andMaryhassharpsenses.Sightinghappenedattime7:45AM,becauseJohnwasatholland_parkat7:45AM.JansawJohnat7:45AM,and...JohnwasatAmsterdamat7:45AM,andJohnisnolongerinLondonat7:45AM,becauseJansawJohnat7:45AM.MeetingeventinvolvesJohn,becauseJansawJohnat7:45AM.MeetingeventinvolvesJohn,justifiedabove,andJanmaylieaboutJohn,becauseJanhasconflictofinterestwithJohn,becauseweassumethatJanandJohnarefriends,andJohnisacrimesuspect.JustificationtreeinEnglishcanbeproducedPartII:Goal-directedExecutionofASPCurrentASPSystemsVerysophisticatedandefficientASPsystemshavebeendevelopedbasedonSATsolvers:CLASP,DLV,CModelsThesesystemsworkasfollows:Groundtheprogramsw.r.t.theconstantspresentintheprogramTransformthepropositionalanswersetprogramsintopropositionalformulasandthenfindtheirmodelsusingaSATsolverThemodelsfoundarethestablemodelsoftheoriginalprogramBecauseSATsolversrequireformulastobepropositional,programswithonlyconstantsandvariablesarefeasible(datalog)Thus,onlypropositionalanswersetprogramscanbeexecuted:whyisthat?
WhyonlypropositionalASP?Considertheevenloop:
teach_db(john):-notteach_db(mary).teach_db(mary):-notteach_db(john).Thecompletedprogramis:teach_db(john)
notteach_db(mary).teach_db(mary)
notteach_db(john).Thesearepropositionalformulas;modelsquicklyfoundusingaSATsolver:{teach_db(john)=true,teach_db(mary)=false}
{teach_db(mary)=true,teach_db(john)=false}Whatifwehave:X
YifXteachesdatabases,Ydoesnot,andviceversateach_db(X):-notteach_db(Y),XY.teach_db(Y):-notteach_db(X).Onesolutionistosimply“ground”theprogramwithallpossiblevaluesofXandY(that’stheapproachadoptedbymost)WhatifdomainsofXandYarenotknown:wewouldneedtohavequery-drivenexecutionlikeProlog
WhyonlypropositionalASP?Problem:PossibleworldsemanticsinpredicatelogichasnotbeenexploredblameRussell&Tarski’spushtokeepeverythinginductiveAllsemanticsconsideredforcomputationallogicsareleastfixedpointbased,i.e.,inductiveWeneedgreatestfixedpointbasedsemanticsaswell(coinductivesemantics)Breakthrough:coinductivelogicprogramming(ICLP2006)[LukeSimonthesis]CoinductiveLP:operationalsemanticsforcomputingelementsofthegreatestfixpointofaprogram:
Program:jack_eats_food:-jill_eats_food.
jill_eats_food:-jack_eats_food
gfp(T
)={jack_eats_food,jill_eats_food}lfp(T
)={}Possibletonowhavepredicateanswersetprogramming(withfullpredicates)
CurrentASPSystems:IssuesFiniteGroundability:ProgramhastobefinitelygroundableNotpossibletohavelists,structures,andcomplexdatastructuresNotpossibletohavearithmeticoverrealsExponentialBlowup:GroundingcanresultinexponentialblowupGiventheclause:p(X,a):-q(Y,b,c).Itturnsinto3x3,i.e.,9clausesp(a,a):-q(a,b,c).p(a,a):-q(b,b,c). p(a,a):-q(c,b,c).p(b,a):-q(a,b,c).p(b,a):-q(b,b,c). p(b,a):-q(c,b,c).p(c,a):-q(a,b,c).p(c,a):-q(b,b,c). p(c,a):-q(c,b,c).Imaginealargeknowledgebasewith1000clauseswith100variablesand100constants;UseofASPseverelylimitedtoonlysolvingcombinatorialproblems(nottoKRproblems)ProgrammershavetocontortthemselveswhilewritingASPcodeOnlyDatalog+NAF:Programscannotcontainlistsstructuresandcomplexdatastructures:resultininfinite-sizedgroundedprogramCurrentASPSystems:IssuesEntireModel:SATsolversfindtheentiremodeloftheprogramEntiremodelm
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 駐馬店2025年河南駐馬店市平輿縣人民醫(yī)院引進(jìn)人才30人筆試歷年參考題庫(kù)附帶答案詳解
- 金華2025年浙江金華義烏市勘測(cè)設(shè)計(jì)研究院招聘筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)健康與員工心理健康整合
- 舟山浙江舟山市普陀區(qū)桃花鎮(zhèn)及下屬單位工作人員招聘筆試歷年參考題庫(kù)附帶答案詳解
- 甘肅2025年甘肅財(cái)貿(mào)職業(yè)學(xué)院招聘博士研究生15人筆試歷年參考題庫(kù)附帶答案詳解
- 清遠(yuǎn)廣東清遠(yuǎn)市第二中學(xué)臨聘教師招聘筆試歷年參考題庫(kù)附帶答案詳解
- 畢節(jié)2025年貴州畢節(jié)市七星關(guān)區(qū)面向區(qū)內(nèi)鄉(xiāng)鎮(zhèn)學(xué)??颊{(diào)教師300人筆試歷年參考題庫(kù)附帶答案詳解
- 無(wú)錫2025年江蘇無(wú)錫市中心血站招聘編外人員2人筆試歷年參考題庫(kù)附帶答案詳解
- 德宏2025年云南德宏州檢察機(jī)關(guān)聘用制書(shū)記員考試招聘13人筆試歷年參考題庫(kù)附帶答案詳解
- 巴彥淖爾2025年內(nèi)蒙古巴彥淖爾市五原縣醫(yī)療衛(wèi)生專(zhuān)業(yè)技術(shù)人員招聘22人筆試歷年參考題庫(kù)附帶答案詳解
- 壓力性尿失禁教學(xué)課件
- 凝血六項(xiàng)課件
- 公路施工監(jiān)理工作重點(diǎn)及難點(diǎn)分析
- 2025云南昆明公交集團(tuán)招聘9人筆試歷年備考題庫(kù)附帶答案詳解2套試卷
- 雨課堂在線學(xué)堂《大數(shù)據(jù)技術(shù)與應(yīng)用》作業(yè)單元考核答案
- 光伏電纜專(zhuān)業(yè)知識(shí)培訓(xùn)課件
- 養(yǎng)牛場(chǎng)消防知識(shí)培訓(xùn)
- 中好建造(安徽)科技有限公司招聘筆試題庫(kù)2025
- 小兒體液不足的護(hù)理措施
- 管控人力成本課件
- 閘安全鑒定管理辦法
評(píng)論
0/150
提交評(píng)論