付費(fèi)下載
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
開放系統(tǒng)的量子非馬爾科夫性和量子關(guān)聯(lián)的中期報告QuantumNon-MarkovianityandQuantumCorrelationsinOpenSystems:MidtermReportAbstract:Inthismidtermreport,wereviewrecentprogressonthestudyofquantumnon-Markovianityandquantumcorrelationsinopenquantumsystems.Wefirstintroducetheconceptofnon-Markovianity,whichischaracterizedbytheviolationoftheMarkovproperty.Wethenpresentvariousmeasuresofnon-Markovianity,includingthetracedistance,thefidelity,andthedivisibilityofquantumevolutions.Next,wereviewtheconceptofquantumcorrelationsandtheirquantification,includingentanglement,discord,andothermeasures.Wethendiscusstheinterplaybetweennon-Markovianityandquantumcorrelations,andhowtheyimpactthedynamicsandcontrolofopenquantumsystems.Finally,wehighlightsomeoftheopenproblemsandfutureresearchdirectionsinthisfield.Introduction:Thestudyofopenquantumsystemsisanactiveandrapidlygrowingareaofresearchinquantumphysics.Suchsystemsofteninteractwiththeirsurroundingenvironmentandcandisplayawiderangeofcomplexdynamics,includingdecoherence,dissipation,andentanglement.Understandingthesedynamicsiscrucialforthedesignandcontrolofquantumtechnologies,andhasimportantimplicationsforfundamentalquestionsinphysics.Oneofthekeychallengesinthestudyofopenquantumsystemsistocharacterizeandquantifythenon-Markovianityoftheirevolution.Non-Markovianityisameasureofhowmuchmemoryisrequiredtodescribetheevolutionofasystem,andischaracterizedbytheviolationoftheMarkovproperty,whichstatesthatthefutureevolutionofasystemdependsonlyonitscurrentstate,andisindependentofitspasthistory.Inopenquantumsystems,thispropertycanbeviolatedduetotheinteractionbetweenthesystemanditsenvironment,whichcanleadtofeedbackandmemoryeffects.Anotherimportantaspectofopenquantumsystemsisthepresenceofquantumcorrelations,suchasentanglementanddiscord.Thesecorrelationsplayakeyroleinmanyquantumtechnologies,includingquantumcomputationandcommunication,andcanalsoimpactthestabilityandcontrolofopenquantumsystems.Inthismidtermreport,wereviewrecentprogressonthestudyofquantumnon-Markovianityandquantumcorrelationsinopenquantumsystems.Wefirstintroducetheconceptofnon-Markovianity,andpresentvariousmeasuresofnon-Markovianity,includingthetracedistance,thefidelity,andthedivisibilityofquantumevolutions.Wethenreviewtheconceptofquantumcorrelationsandtheirquantification,includingentanglement,discord,andothermeasures.Wediscusstheinterplaybetweennon-Markovianityandquantumcorrelations,andhowtheyimpactthedynamicsandcontrolofopenquantumsystems.Finally,wehighlightsomeoftheopenproblemsandfutureresearchdirectionsinthisfield.MeasuresofNon-Markovianity:Ingeneral,thereareseveralwaystoquantifynon-Markovianityinopenquantumsystems.Onecommonapproachistousethetracedistancemeasure,whichquantifiesthedistinguishabilityoftwoquantumstates.Specifically,ifthetracedistancebetweentheevolvedstateandtheclosestMarkovianstateincreaseswithtime,thentheevolutionisnon-Markovian.Anotherapproachistousethefidelitymeasure,whichquantifiestheoverlapbetweentwoquantumstates.Specifically,ifthefidelitybetweentheevolvedstateandtheclosestMarkovianstatedecreaseswithtime,thentheevolutionisnon-Markovian.Yetanotherapproachistousetheconceptofdivisibility,whichcharacterizesthedegreetowhichaquantumevolutioncanbeexpressedasaseriesofMarkovianevolutionsteps.Specifically,iftheevolutionisnotdivisibleintoaseriesofMarkoviansteps,thenitisnon-Markovian.QuantumCorrelations:Inadditiontonon-Markovianity,anotherimportantaspectofopenquantumsystemsisthepresenceofquantumcorrelations.Thesecorrelationsariseduetotheentanglementandotherformsofquantumcorrelationsbetweenthesystemanditsenvironment.Entanglement,inparticular,hasbeenextensivelystudiedinthecontextofopenquantumsystems,duetoitsfundamentalnatureanditsimportantroleinquantumtechnologies.Anotherimportantclassofquantumcorrelationsisquantumdiscord,whichmeasuresthedegreeofnon-classicalcorrelationsbetweentwoquantumsystems.Discordisdistinctfromentanglement,andcanariseeveninseparablestates.Thismakesitausefultoolforcharacterizingthecorrelationspresentinopenquantumsystems.InterplayBetweenNon-MarkovianityandQuantumCorrelations:Thereisagrowingbodyofworkexploringtheinterplaybetweennon-Markovianityandquantumcorrelationsinopenquantumsystems.Onekeyresultisthatnon-Markovianitycanbearesourceforgeneratingandsustainingquantumcorrelations,includingentanglementanddiscord.Furthermore,thepresenceofquantumcorrelationscanimpactthenon-Markovianityofthesystem'sevolution,leadingtofeedbackandmemoryeffects.ApplicationsandFutureDirections:Thestudyofnon-Markovianityandquantumcorrelationsinopenquantumsystemshasawiderangeofapplications,includingquantuminformationprocessing,quantumthermodynamics,andquantummetrology.However,therearestillmanyopenproblemsandfutureresearchdirectionsinthisfield.Somekeyquestionsinclude:Whatarethefundamentallimitsonthedegreeofnon-Markovianityinopenquantumsystems?Howcanquantumcorrelationsbeoptimizedandcontrolledinthesesystems?Whataretheimplicationsofnon-Markovia
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026河北滄州市第二中學(xué)選聘教師1人備考題庫及一套參考答案詳解
- 2026年西咸新區(qū)黃岡涇河學(xué)校春季教師招聘備考題庫及完整答案詳解一套
- 2025湖北省中西醫(yī)結(jié)合醫(yī)院招聘1人備考題庫(含答案詳解)
- 2025江西中贛投設(shè)計本部招聘6人備考題庫【社招】有完整答案詳解
- 2026年宣威市發(fā)展和改革局招聘編制外工作人員備考題庫(5人)完整答案詳解
- 2026地勘中心(中國非礦)成員單位招聘129人備考題庫(一)及參考答案詳解一套
- 2026年南昌大學(xué)共青學(xué)院行政人員招聘1人備考題庫及完整答案詳解一套
- 2026年中國熱帶農(nóng)業(yè)科學(xué)院南亞熱帶作物研究所第一批招聘23人備考題庫(含答案詳解)
- 2026年湖南邵陽隆回縣公開選調(diào)15名機(jī)關(guān)事業(yè)單位工作人員備考題庫及參考答案詳解
- 2025中國人民健康保險股份有限公司景德鎮(zhèn)中心支公司招聘備考題庫(江西)(含答案詳解)
- 2026年廣東粵海水務(wù)股份有限公司招聘備考題庫及一套答案詳解
- 2026屆安徽省合肥一中八中、六中生物高一上期末聯(lián)考試題含解析
- 中西醫(yī)結(jié)合治療慢性病康復(fù)優(yōu)勢
- 診所醫(yī)生營銷培訓(xùn)課件
- 一節(jié)課說課模板課件
- 河道清潔員安全培訓(xùn)課件
- 2026年鐘山職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考試題帶答案解析
- 上海市普陀區(qū)2025-2026學(xué)年八年級上學(xué)期期中語文試題(含答案)
- 人教版(2024)八年級上冊英語期末復(fù)習(xí):各單元語法精講+練習(xí)題(無答案)
- 水土流失綜合治理工程項目可行性報告
- 2026年開封大學(xué)單招職業(yè)傾向性測試題庫及答案詳解1套
評論
0/150
提交評論