版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
指數(shù)函數(shù)(第1課時)課件目錄CONTENCT指數(shù)函數(shù)基本概念指數(shù)函數(shù)運算規(guī)則指數(shù)函數(shù)在生活中的應(yīng)用指數(shù)函數(shù)與一元二次方程關(guān)系指數(shù)函數(shù)圖像變換及性質(zhì)分析課堂小結(jié)與課后作業(yè)布置01指數(shù)函數(shù)基本概念指數(shù)函數(shù)定義$y=a^x$($a>0$,$aneq1$)大于0且不等于1的常數(shù)自變量,取實數(shù)范圍內(nèi)的任意值因變量,隨自變量$x$的變化而變化指數(shù)函數(shù)形式底數(shù)$a$指數(shù)$x$函數(shù)值$y$指數(shù)函數(shù)的圖像是一條從左下方向右上方延伸的曲線,當(dāng)$a>1$時,曲線上升;當(dāng)$0<a<1$時,曲線下降。圖像形狀所有指數(shù)函數(shù)的圖像都經(jīng)過點$(0,1)$。恒過定點當(dāng)$a>1$時,指數(shù)函數(shù)在$mathbf{R}$上是增函數(shù);當(dāng)$0<a<1$時,指數(shù)函數(shù)在$mathbf{R}$上是減函數(shù)。單調(diào)性指數(shù)函數(shù)的值域為$(0,+infty)$。值域指數(shù)函數(shù)圖像與性質(zhì)互逆關(guān)系01指數(shù)函數(shù)與對數(shù)函數(shù)是互逆的,即如果$y=a^x$,那么$x=log_ay$。轉(zhuǎn)換關(guān)系02通過指數(shù)函數(shù)和對數(shù)函數(shù)的轉(zhuǎn)換關(guān)系,可以實現(xiàn)兩種函數(shù)之間的互相轉(zhuǎn)換。例如,將指數(shù)方程$a^x=N$轉(zhuǎn)換為對數(shù)方程$x=log_aN$。應(yīng)用場景03在實際問題中,指數(shù)函數(shù)和對數(shù)函數(shù)經(jīng)常同時出現(xiàn),需要靈活運用它們之間的關(guān)系來解決問題。例如,在復(fù)利計算、人口增長、放射性衰變等領(lǐng)域中,都會涉及到指數(shù)函數(shù)和對數(shù)函數(shù)的應(yīng)用。指數(shù)函數(shù)與對數(shù)函數(shù)關(guān)系02指數(shù)函數(shù)運算規(guī)則運算規(guī)則示例特別提示當(dāng)?shù)讛?shù)相同時,指數(shù)相乘即是將兩個指數(shù)相加。a^m×a^n=a^(m+n)此規(guī)則僅適用于底數(shù)相同的情況。同底數(shù)指數(shù)相乘當(dāng)?shù)讛?shù)相同時,指數(shù)相除即是將被除數(shù)的指數(shù)減去除數(shù)的指數(shù)。運算規(guī)則a^m÷a^n=a^(m-n)示例此規(guī)則同樣僅適用于底數(shù)相同的情況。特別提示同底數(shù)指數(shù)相除010203運算規(guī)則示例特別提示冪的乘方冪的乘方即是將指數(shù)的乘方作為新的指數(shù)。(a^m)^n=a^(m×n)注意區(qū)分冪的乘方與指數(shù)的乘法,兩者運算規(guī)則不同。示例(ab)^n=a^n×b^n特別提示此規(guī)則適用于多個因數(shù)的積的乘方,每個因數(shù)都需要分別進(jìn)行乘方運算。運算規(guī)則積的乘方即是將每個因數(shù)的乘方相乘。積的乘方03指數(shù)函數(shù)在生活中的應(yīng)用復(fù)利公式指數(shù)函數(shù)與復(fù)利復(fù)利計算A=P(1+r/n)^(nt),其中A為最終金額,P為本金,r為年利率,n為每年計息次數(shù),t為時間(年)。該公式用于計算投資或存款在固定利率下的復(fù)利增長情況。當(dāng)計息次數(shù)n趨于無窮大時,復(fù)利公式變?yōu)檫B續(xù)復(fù)利公式A=Pe^(rt),其中e為自然對數(shù)的底數(shù)。此時,指數(shù)函數(shù)描述了資金在連續(xù)復(fù)利下的增長情況。每年折舊額相等,折舊額=(原值-殘值)/使用年限。這種方法下,資產(chǎn)的價值隨時間均勻減少。折舊率逐年遞減,折舊額=原值*折舊率。這種方法下,資產(chǎn)的價值初期減少較快,后期減少較慢。折舊計算指數(shù)折舊法直線折舊法人口數(shù)量呈指數(shù)增長,即人口數(shù)量與時間的關(guān)系可以用指數(shù)函數(shù)描述。這種模型適用于人口增長率保持不變的情況。指數(shù)增長模型考慮到資源有限,人口增長率隨人口數(shù)量的增加而減少。這種模型下,人口數(shù)量先呈指數(shù)增長,然后逐漸趨于穩(wěn)定。Logistic增長模型人口增長模型衰變公式N=N0*e^(-λt),其中N為t時刻的放射性物質(zhì)數(shù)量,N0為初始數(shù)量,λ為衰變常數(shù),t為時間。該公式描述了放射性物質(zhì)隨時間呈指數(shù)衰減的情況。半衰期放射性物質(zhì)衰變到原來一半所需的時間稱為半衰期。半衰期與衰變常數(shù)的關(guān)系為T1/2=ln2/λ。放射性物質(zhì)衰變模型04指數(shù)函數(shù)與一元二次方程關(guān)系03求解公式$x=frac{{-bpmsqrt{{b^2-4ac}}}}{{2a}}$01一元二次方程標(biāo)準(zhǔn)形式$ax^2+bx+c=0$02配方方法將方程化為完全平方形式,從而得到解。一元二次方程求解公式推導(dǎo)010203040545%50%75%85%95%判別式定義:$Delta=b^2-4ac$判別式與根的關(guān)系當(dāng)$Delta>0$時,方程有兩個不相等的實根。當(dāng)$Delta=0$時,方程有兩個相等的實根(重根)。當(dāng)$Delta<0$時,方程無實根,有兩個共軛復(fù)根。判別式與根的關(guān)系韋達(dá)定理內(nèi)容:對于一元二次方程$ax^2+bx+c=0$,若其兩根為$x_1$和$x_2$,則有$x_1+x_2=-frac{a}$和$x_1timesx_2=frac{c}{a}$。在指數(shù)函數(shù)中的應(yīng)用利用韋達(dá)定理求解指數(shù)函數(shù)的零點問題。通過韋達(dá)定理分析指數(shù)函數(shù)的單調(diào)性、最值等性質(zhì)。結(jié)合判別式,判斷指數(shù)函數(shù)與坐標(biāo)軸的交點情況。0102030405韋達(dá)定理在指數(shù)函數(shù)中的應(yīng)用05指數(shù)函數(shù)圖像變換及性質(zhì)分析指數(shù)函數(shù)圖像的平移通過改變函數(shù)中自變量的值,可以實現(xiàn)指數(shù)函數(shù)圖像在坐標(biāo)系中的左右平移。平移對函數(shù)性質(zhì)的影響平移不改變函數(shù)的單調(diào)性、周期性等基本性質(zhì),但會影響函數(shù)的定義域和值域。平移變換伸縮變換指數(shù)函數(shù)圖像的伸縮通過改變函數(shù)中底數(shù)或指數(shù)的值,可以實現(xiàn)指數(shù)函數(shù)圖像在坐標(biāo)系中的伸縮變換。伸縮對函數(shù)性質(zhì)的影響伸縮變換會改變函數(shù)的增減性、最值等性質(zhì),但不會影響函數(shù)的周期性。指數(shù)函數(shù)圖像關(guān)于y軸對稱,即滿足f(-x)=f(x)。指數(shù)函數(shù)圖像的對稱對稱性質(zhì)使得指數(shù)函數(shù)具有偶函數(shù)的特性,如在對稱區(qū)間內(nèi)單調(diào)性相反等。對稱對函數(shù)性質(zhì)的影響對稱變換VS指數(shù)函數(shù)不具有周期性,即不存在一個正數(shù)T,使得對于所有x都有f(x+T)=f(x)。周期性與函數(shù)性質(zhì)的關(guān)系周期性是函數(shù)的重要性質(zhì)之一,對于具有周期性的函數(shù),其圖像會呈現(xiàn)出一種重復(fù)的規(guī)律性。然而,指數(shù)函數(shù)由于其增長或衰減的特性,不具有周期性。指數(shù)函數(shù)的周期性周期性分析06課堂小結(jié)與課后作業(yè)布置01020304指數(shù)函數(shù)定義指數(shù)函數(shù)性質(zhì)指數(shù)函數(shù)圖像指數(shù)函數(shù)應(yīng)用課堂小結(jié)回顧本節(jié)課重點內(nèi)容回顧指數(shù)函數(shù)的圖像特征,如何通過圖像判斷指數(shù)函數(shù)的性質(zhì)??偨Y(jié)指數(shù)函數(shù)的性質(zhì),包括函數(shù)值隨自變量變化的情況,函數(shù)的單調(diào)性、奇偶性等?;仡欀笖?shù)函數(shù)的定義,明確底數(shù)和指數(shù)的含義,以及指數(shù)函數(shù)的表示方法??偨Y(jié)指數(shù)函數(shù)在實際問題中的應(yīng)用,如復(fù)利計算、人口增長等。練習(xí)題思考題閱讀材料小組討論課后作業(yè)鞏固所學(xué)知識技能布置與本節(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46955-2026設(shè)施花卉生產(chǎn)環(huán)境控制規(guī)范
- GB 7300.206-2025飼料添加劑第2部分:維生素及類維生素氯化膽堿
- 學(xué)校美術(shù)教室管理制度
- 村運會面試題目及答案
- 養(yǎng)老院消防通道及疏散預(yù)案制度
- 養(yǎng)老院老人生活娛樂活動組織人員福利待遇制度
- 地產(chǎn)板塊投資問答題目及答案
- 農(nóng)家書屋管理制度和借閱制度
- 辦公室辦公用品采購與領(lǐng)用制度
- 金木集團(tuán)的獎金制度
- 2026中國單細(xì)胞測序技術(shù)突破與商業(yè)化應(yīng)用前景報告
- 景區(qū)服務(wù)培訓(xùn)課件
- 2025年深圳低空經(jīng)濟(jì)中心基礎(chǔ)設(shè)施建設(shè)研究報告
- 中科曙光入職在線測評題庫
- 叉車初級資格證考試試題與答案
- 2025至2030中國新癸酸縮水甘油酯行業(yè)發(fā)展研究與產(chǎn)業(yè)戰(zhàn)略規(guī)劃分析評估報告
- 剪映完整課件
- 新疆機井管理辦法
- 導(dǎo)熱油事故現(xiàn)場處置方案夏君96課件
- DB32∕T 310026-2024 雷電防護(hù)裝置檢測部位及檢測點確認(rèn)技術(shù)規(guī)范
- GB/T 45680-2025起重機風(fēng)載荷計算
評論
0/150
提交評論