版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江鐵力市四中學2023-2024學年中考數(shù)學考前最后一卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.2.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.163.2018年,我國將加大精準扶貧力度,今年再減少農村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數(shù)據(jù)280萬用科學計數(shù)法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1074.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形5.下列計算正確的是()A.a(chǎn)2+a2=a4 B.a(chǎn)5?a2=a7 C.(a2)3=a5 D.2a2﹣a2=26.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學記數(shù)法表示應為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1057.在一次數(shù)學答題比賽中,五位同學答對題目的個數(shù)分別為7,5,3,5,10,則關于這組數(shù)據(jù)的說法不正確的是()A.眾數(shù)是5 B.中位數(shù)是5 C.平均數(shù)是6 D.方差是3.68.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.129.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個10.如圖,在△ABC中,點D是邊AB上的一點,∠ADC=∠ACB,AD=2,BD=6,則邊AC的長為()A.2 B.4 C.6 D.8二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.12.分解因式:2a2﹣2=_____.13.如圖,反比例函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經(jīng)軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+14.因式分解:a3﹣2a2b+ab2=_____.15.在正方形鐵皮上剪下一個扇形和一個半徑為1cm的圓形,使之恰好圍成一個圓錐,則圓錐的高為______.16.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____17.已知點M(1,2)在反比例函數(shù)y=k三、解答題(共7小題,滿分69分)18.(10分)如圖,海中有一個小島A,該島四周11海里范圍內有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)19.(5分)科研所計劃建一幢宿舍樓,因為科研所實驗中會產(chǎn)生輻射,所以需要有兩項配套工程.①在科研所到宿舍樓之間修一條高科技的道路;②對宿含樓進行防輻射處理;已知防輻射費y萬元與科研所到宿舍樓的距離xkm之間的關系式為y=ax+b(0≤x≤3).當科研所到宿舍樓的距離為1km時,防輻射費用為720萬元;當科研所到宿含樓的距離為3km或大于3km時,輻射影響忽略不計,不進行防輻射處理,設修路的費用與x2成正比,且比例系數(shù)為m萬元,配套工程費w=防輻射費+修路費.(1)當科研所到宿舍樓的距離x=3km時,防輻射費y=____萬元,a=____,b=____;(2)若m=90時,求當科研所到宿舍樓的距離為多少km時,配套工程費最少?(3)如果最低配套工程費不超過675萬元,且科研所到宿含樓的距離小于等于3km,求m的范圍?20.(8分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.21.(10分)某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數(shù)量比用3000元購進的甲種品牌空調數(shù)量多2臺.求甲、乙兩種品牌空調的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.22.(10分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若m為非負整數(shù),且該方程的根都是無理數(shù),求m的值.23.(12分)如圖,?ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.24.(14分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看第一層是三個小正方形,第二層中間有一個小正方形,
故選:A.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖.2、A【解析】
∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.3、B【解析】分析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:280萬這個數(shù)用科學記數(shù)法可以表示為故選B.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.4、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.5、B【解析】
根據(jù)整式的加減乘除乘方運算法則逐一運算即可?!驹斀狻緼.,故A選項錯誤。B.,故B選項正確。C.,故C選項錯誤。D.,故D選項錯誤。故答案選B.【點睛】本題考查整式加減乘除運算法則,只需熟記法則與公式即可。6、C【解析】試題分析:28000=1.1×1.故選C.考點:科學記數(shù)法—表示較大的數(shù).7、D【解析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)以及方差的定義判斷各選項正誤即可.【詳解】A、數(shù)據(jù)中5出現(xiàn)2次,所以眾數(shù)為5,此選項正確;B、數(shù)據(jù)重新排列為3、5、5、7、10,則中位數(shù)為5,此選項正確;C、平均數(shù)為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數(shù)、中位數(shù)以及眾數(shù)的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.8、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質,3、勾股定理,4、平行線的性質9、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、B【解析】
證明△ADC∽△ACB,根據(jù)相似三角形的性質可推導得出AC2=AD?AB,由此即可解決問題.【詳解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴,∴AC2=AD?AB=2×8=16,∵AC>0,∴AC=4,故選B.【點睛】本題考查相似三角形的判定和性質、解題的關鍵是正確尋找相似三角形解決問題.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.12、2(a+1)(a﹣1).【解析】
先提取公因式2,再對余下的多項式利用平方差公式繼續(xù)分解.【詳解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【點睛】本題考查了提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、A【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.14、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式進行分解即可.【詳解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案為a(a﹣b)1.【點睛】本題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.15、cm【解析】
利用已知得出底面圓的半徑為:1cm,周長為2πcm,進而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點睛】此題主要考查了圓錐展開圖與原圖對應情況,以及勾股定理等知識,根據(jù)已知得出母線長是解決問題的關鍵.16、【解析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質、勾股定理、直角三角形斜邊中線的性質、銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考常考題型.17、-2【解析】k==1×(-2)=-2三、解答題(共7小題,滿分69分)18、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設AH=CH=x,根據(jù)可得關于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行,不會有觸礁的危險.點睛:本題考查了解直角三角形的應用﹣方向角問題,解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.19、(1)0,﹣360,101;(2)當距離為2公里時,配套工程費用最少;(3)0<m≤1.【解析】
(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,即可求解;(2)根據(jù)題目:配套工程費w=防輻射費+修路費分0≤x≤3和x≥3時討論.①當0≤x≤3時,配套工程費W=90x2﹣360x+101,②當x≥3時,W=90x2,分別求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,然后討論:x==3時和x=>3時兩種情況m取值即可求解.【詳解】解:(1)當x=1時,y=720,當x=3時,y=0,將x、y代入y=ax+b,解得:a=﹣360,b=101,故答案為0,﹣360,101;(2)①當0≤x≤3時,配套工程費W=90x2﹣360x+101,∴當x=2時,Wmin=720;②當x≥3時,W=90x2,W隨x最大而最大,當x=3時,Wmin=810>720,∴當距離為2公里時,配套工程費用最少;(3)∵0≤x≤3,W=mx2﹣360x+101,(m>0),其對稱軸x=,當x=≤3時,即:m≥60,Wmin=m()2﹣360()+101,∵Wmin≤675,解得:60≤m≤1;當x=>3時,即m<60,當x=3時,Wmin=9m<675,解得:0<m<60,故:0<m≤1.【點睛】本題考查了二次函數(shù)的性質在實際生活中的應用.最值問題常利函數(shù)的增減性來解答.20、見解析【解析】試題分析:(1)先證得四邊形ABED是平行四邊形,又AB=AD,鄰邊相等的平行四邊形是菱形;(2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.試題解析:梯形ABCD中,AD∥BC,∴四邊形ABED是平行四邊形,又AB=AD,∴四邊形ABED是菱形;(2)∵四邊形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考點:1.菱形的判定;2.直角三角形的性質;3.平行四邊形的判定21、(1)甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元【解析】
(1)設甲種品牌空調的進貨價為x元/臺,則乙種品牌空調的進貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關于x的分式方程,解之并檢驗后即可得出結論;(2)設購進甲種品牌空調a臺,所獲得的利潤為y元,則購進乙種品牌空調(10-a)臺,根據(jù)總價=單價×數(shù)量結合總價不超過16000元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數(shù)量即可得出y關于a的函數(shù)關系式,利用一次函數(shù)的性質即可解決最值問題.【詳解】(1)由(1)設甲種品牌的進價為x元,則乙種品牌空調的進價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)設購進甲種品牌空調a臺,則購進乙種品牌空調(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當a=7時,w最大,最大為12100元.答:當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數(shù)的應用、分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)根據(jù)數(shù)量=總價÷單價列出關于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進數(shù)量找出y關于a的函數(shù)關系式.22、(1)m<2;(2)m=1.【解析】
(1)利用方程有兩個不相等的實數(shù)根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據(jù)根的情
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職第一學年(工程造價)工程招投標實訓試題及答案
- 2025年中職(烹飪工藝與營養(yǎng))冷菜制作技藝試題及答案
- 2025年大學園藝生產(chǎn)管理應用(應用技術)試題及答案
- 2025年高職(助產(chǎn))倫理操作試題及答案
- 2025年大學教育技術學(教學技術)試題及答案
- 職業(yè)規(guī)劃階梯模型
- 2025貴州康體旅投發(fā)展有限公司實習生招聘2人備考題庫及參考答案詳解一套
- 上海市莘松莘城明星康城師培等聯(lián)考2025-2026學年上學期七年級數(shù)學期末試題(含答案)
- 湖南省株洲市天元區(qū)2025-2026學年八年級上學期期末考試生物試題(含答案)
- 廣東省茂名市龍嶺學校2025-2026學年九年級上學期1月期末歷史試題
- 高考物理一輪復習重難點逐個突破專題71旋轉圓模型放縮圓模型平移圓模型(原卷版+解析)
- 內科質控會議管理制度
- 電氣防火防爆培訓課件
- 彝族文化和幼兒園課程結合的研究獲獎科研報告
- 空調安裝免責協(xié)議
- 湖北省襄樊市樊城區(qū)2023-2024學年數(shù)學四年級第一學期期末質量檢測試題含答案
- 新北師大版八年級數(shù)學下冊導學案(全冊)
- 常用實驗室檢查血常規(guī)演示文稿
- cimatron紫藤教程系列gpp2運行邏輯及block說明
- GB/T 32473-2016凝結水精處理用離子交換樹脂
- CB/T 1233-1994水面艦船螺旋槳脈動壓力測量規(guī)程
評論
0/150
提交評論