2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷含解析_第3頁(yè)
2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷含解析_第4頁(yè)
2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年河北省石家莊市第四十一中學(xué)中考數(shù)學(xué)四模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.對(duì)于實(shí)數(shù)x,我們規(guī)定表示不大于x的最大整數(shù),例如,,,若,則x的取值可以是()A.40 B.45 C.51 D.562.若關(guān)于x的一元一次不等式組無(wú)解,則a的取值范圍是()A.a(chǎn)≥3 B.a(chǎn)>3 C.a(chǎn)≤3 D.a(chǎn)<33.神舟十號(hào)飛船是我國(guó)“神州”系列飛船之一,每小時(shí)飛行約28000公里,將28000用科學(xué)記數(shù)法表示應(yīng)為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1054.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.5.如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長(zhǎng)線上的一點(diǎn),PT切⊙O于點(diǎn)T,M是OP的中點(diǎn),射線TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.6.下列各組單項(xiàng)式中,不是同類項(xiàng)的一組是()A.和 B.和 C.和 D.和37.如圖,正方形ABCD內(nèi)接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.8.從一個(gè)邊長(zhǎng)為3cm的大立方體挖去一個(gè)邊長(zhǎng)為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.9.下列等式從左到右的變形,屬于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x D.4my-2=2(2my-1)10.如圖,已知邊長(zhǎng)為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長(zhǎng)為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過(guò)程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣211.某市6月份日平均氣溫統(tǒng)計(jì)如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.2212.剪紙是水族的非物質(zhì)文化遺產(chǎn)之一,下列剪紙作品是中心對(duì)稱圖形的是()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.因式分解:-2x2y+8xy-6y=__________.14.如圖,直線交于點(diǎn),,與軸負(fù)半軸,軸正半軸分別交于點(diǎn),,,的延長(zhǎng)線相交于點(diǎn),則的值是_________.15.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數(shù)為__________16.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長(zhǎng)為_____.17.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.18.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長(zhǎng)為________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長(zhǎng).20.(6分)(1)計(jì)算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數(shù)軸上表示出來(lái).21.(6分)某校為了解全校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂(lè)、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的不完整統(tǒng)計(jì)表:節(jié)目代號(hào)ABCDE節(jié)目類型新聞體育動(dòng)畫娛樂(lè)戲曲喜愛人數(shù)1230m549請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:(1)被調(diào)查學(xué)生的總數(shù)為人,統(tǒng)計(jì)表中m的值為.扇形統(tǒng)計(jì)圖中n的值為;(2)被調(diào)查學(xué)生中,最喜愛電視節(jié)目的“眾數(shù)”;(3)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜愛新聞節(jié)目的學(xué)生人數(shù).22.(8分)已知一個(gè)矩形紙片OACB,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn)A(11,0),點(diǎn)B(0,6),點(diǎn)P為BC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)B′和折痕OP.設(shè)BP=t.(Ⅰ)如圖①,當(dāng)∠BOP=300時(shí),求點(diǎn)P的坐標(biāo);(Ⅱ)如圖②,經(jīng)過(guò)點(diǎn)P再次折疊紙片,使點(diǎn)C落在直線PB′上,得點(diǎn)C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當(dāng)點(diǎn)C′恰好落在邊OA上時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).23.(8分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過(guò)弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長(zhǎng).24.(10分)如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長(zhǎng)CD、BA交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AH⊥CE,垂足為點(diǎn)H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.25.(10分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長(zhǎng);直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.26.(12分)先化簡(jiǎn),再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.27.(12分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時(shí),求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn).①當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′落在直線BC上時(shí),求m的值;②當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′落在第一象限內(nèi),P′A2取得最小值時(shí),求m的值及這個(gè)最小值.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

解:根據(jù)定義,得∴解得:.故選C.2、A【解析】

先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點(diǎn)睛】考查的是解一元一次不等式組,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.3、C【解析】試題分析:28000=1.1×1.故選C.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).4、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點(diǎn)睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.5、A【解析】

連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點(diǎn)T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M(jìn)是OP的中點(diǎn),∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.6、A【解析】

如果兩個(gè)單項(xiàng)式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個(gè)單項(xiàng)式為同類項(xiàng).【詳解】根據(jù)題意可知:x2y和2xy2不是同類項(xiàng).故答案選:A.【點(diǎn)睛】本題考查了單項(xiàng)式與多項(xiàng)式,解題的關(guān)鍵是熟練的掌握單項(xiàng)式與多項(xiàng)式的相關(guān)知識(shí)點(diǎn).7、B【解析】

連接OA、OB,利用正方形的性質(zhì)得出OA=ABcos45°=2,根據(jù)陰影部分的面積=S⊙O-S正方形ABCD列式計(jì)算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點(diǎn)睛】本題主要考查扇形的面積計(jì)算,解題的關(guān)鍵是熟練掌握正方形的性質(zhì)和圓的面積公式.8、C【解析】

左視圖就是從物體的左邊往右邊看.小正方形應(yīng)該在右上角,故B錯(cuò)誤,看不到的線要用虛線,故A錯(cuò)誤,大立方體的邊長(zhǎng)為3cm,挖去的小立方體邊長(zhǎng)為1cm,所以小正方形的邊長(zhǎng)應(yīng)該是大正方形,故D錯(cuò)誤,所以C正確.故此題選C.9、D【解析】

根據(jù)因式分解是把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式積的形式,可得答案.【詳解】解:A、是整式的乘法,故A不符合題意;

B、沒(méi)把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式積的形式,故B不符合題意;

C、沒(méi)把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式積的形式,故C不符合題意;

D、把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式積的形式,故D符合題意;

故選D.【點(diǎn)睛】本題考查了因式分解的意義,因式分解是把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式積的形式.10、B【解析】分析:首先得到當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最小,然后分別求得AD、OE′的長(zhǎng),最后求得DE′的長(zhǎng)即可.詳解:如圖,當(dāng)點(diǎn)E旋轉(zhuǎn)至y軸上時(shí)DE最?。弧摺鰽BC是等邊三角形,D為BC的中點(diǎn),∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長(zhǎng)等于其半徑,正六邊形的邊長(zhǎng)為2,∴OE=OE′=2∵點(diǎn)A的坐標(biāo)為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點(diǎn)睛:本題考查了正多邊形的計(jì)算及等邊三角形的性質(zhì),解題的關(guān)鍵是從圖形中整理出直角三角形.11、D【解析】分析:根據(jù)條形統(tǒng)計(jì)圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個(gè)數(shù)據(jù),第15個(gè)數(shù)和第16個(gè)數(shù)都是22,所以中位數(shù)是22.故選D.點(diǎn)睛:考查中位數(shù)的定義,看懂條形統(tǒng)計(jì)圖是解題的關(guān)鍵.12、D【解析】

根據(jù)把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心進(jìn)行分析即可.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;D、是中心對(duì)稱圖形,故此選項(xiàng)正確;故選:D.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形,關(guān)鍵是掌握中心對(duì)稱圖形的定義.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-2y(x-1)(x-3)【解析】分析:提取公因式法和十字相乘法相結(jié)合因式分解即可.詳解:原式故答案為點(diǎn)睛:本題主要考查因式分解,熟練掌握提取公因式法和十字相乘法是解題的關(guān)鍵.分解一定要徹底.14、【解析】

連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【點(diǎn)睛】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關(guān)鍵.15、75°【解析】

先根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行得出AC∥DF,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等得出∠2=∠A=45°,然后根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠1的度數(shù).【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點(diǎn)睛】本題考查了平行線的判定與性質(zhì),三角形外角的性質(zhì),求出∠2=∠A=45°是解題的關(guān)鍵.16、【解析】

設(shè)CE=x,由矩形的性質(zhì)得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質(zhì)得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長(zhǎng)度,進(jìn)而求出DF的長(zhǎng)度;然后在Rt△DEF根據(jù)勾股定理列出關(guān)于x的方程即可解決問(wèn)題.【詳解】設(shè)CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.17、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點(diǎn)睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個(gè)代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.18、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)證明見解析;(2).【解析】

(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過(guò)點(diǎn)E作EH⊥BD于點(diǎn)H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長(zhǎng),從而求得BE、DE的長(zhǎng),即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過(guò)點(diǎn)E作EH⊥BD于點(diǎn)H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點(diǎn)睛】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)等知識(shí).注意掌握輔助線的作法.20、(1)5;(2)﹣2≤x<﹣.【解析】

(1)原式第一項(xiàng)利用乘方的意義計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值以及二次根式的乘法計(jì)算,第三項(xiàng)利用負(fù)整數(shù)指數(shù)冪法則計(jì)算,最后一項(xiàng)利用零指數(shù)冪法則計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則計(jì)算即可得到結(jié)果;(2)先求出兩個(gè)不等式的解集,再找出解集的公共部分即可.【詳解】(1)原式=5;(2)解不等式①得,x≥﹣2,解不等式②得,所以不等式組的解集是用數(shù)軸表示為:【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,零指數(shù)冪,不等式組的解法,是綜合題,但難度不大,計(jì)算時(shí)要注意運(yùn)算符號(hào)的處理以及解集公共部分的確定.21、(1)150;45,36,(2)娛樂(lè)(3)1【解析】

(1)由“體育”的人數(shù)及其所占百分比可得總?cè)藬?shù),用總?cè)藬?shù)減去其它節(jié)目的人數(shù)即可得求得動(dòng)畫的人數(shù)m,用娛樂(lè)的人數(shù)除以總?cè)藬?shù)即可得n的值;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總?cè)藬?shù)乘以樣本中喜愛新聞節(jié)目的人數(shù)所占比例.【詳解】解:(1)被調(diào)查的學(xué)生總數(shù)為30÷20%=150(人),m=150?(12+30+54+9)=45,n%=×100%=36%,即n=36,故答案為150,45,36;(2)由題意知,最喜愛電視節(jié)目為“娛樂(lè)”的人數(shù)最多,∴被調(diào)查學(xué)生中,最喜愛電視節(jié)目的“眾數(shù)”為娛樂(lè),故答案為娛樂(lè);(3)估計(jì)該校最喜愛新聞節(jié)目的學(xué)生人數(shù)為2000×=1.【點(diǎn)睛】本題考查了統(tǒng)計(jì)表、扇形統(tǒng)計(jì)圖、樣本估計(jì)總體等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.22、(Ⅰ)點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).【解析】

(Ⅰ)根據(jù)題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得答案.(Ⅲ)首先過(guò)點(diǎn)P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長(zhǎng),然后利用相似三角形的對(duì)應(yīng)邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據(jù)題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點(diǎn)P的坐標(biāo)為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設(shè)BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點(diǎn)P的坐標(biāo)為(,1)或(,1).過(guò)點(diǎn)P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡(jiǎn),得.解得:.∴點(diǎn)P的坐標(biāo)為(,1)或(,1).23、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長(zhǎng),在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過(guò)O作OE⊥AD于E,則E為AD中點(diǎn),又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.24、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;(2)利用正弦的定義計(jì)算;(3)證明△CDF∽△AOF,根據(jù)相似三角形的性質(zhì)得到CD=CE,根據(jù)等腰三角形的性質(zhì)證明.【詳解】(1)證明:連接OA,由圓周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直徑,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切線;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)證明:由(2)知,OA是△BDE的中位線,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【點(diǎn)睛】本題考查的是圓的知識(shí)的綜合應(yīng)用,掌握?qǐng)A周角定理、相似三角形的判定定理和性質(zhì)定理、三角形中位線定理是解題的關(guān)鍵.25、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問(wèn)題.(2)利用勾股定理,面積法求高CD即可.(3)根據(jù)CD=3DE,構(gòu)建方程即可解決問(wèn)題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負(fù)值舍去),即所求a的值是.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用,直角三角形斜邊中線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.26、,【解析】原式括號(hào)中兩項(xiàng)通分并利用同分母分式的加法法則計(jì)算,同時(shí)利用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)將除法運(yùn)算化為乘法運(yùn)算,約分得到最簡(jiǎn)結(jié)果,利用-1的偶次冪為1及特殊角的三角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論