版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古烏蘭察布市化德縣重點達標名校2023-2024學年中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列關于事件發(fā)生可能性的表述,正確的是()A.事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件B.體育彩票的中獎率為10%,則買100張彩票必有10張中獎C.在同批次10000件產品中抽取100件發(fā)現有5件次品,則這批產品中大約有500件左右的次品D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為2.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.3.某校數學興趣小組在一次數學課外活動中,隨機抽查該校10名同學參加今年初中學業(yè)水平考試的體育成績,得到結果如下表所示:下列說法正確的是()A.這10名同學體育成績的中位數為38分B.這10名同學體育成績的平均數為38分C.這10名同學體育成績的眾數為39分D.這10名同學體育成績的方差為24.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.5.函數y=和y=在第一象限內的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點B.給出如下結論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積大小不會發(fā)生變化;④CA=AP.其中所有正確結論的序號是()A.①②③ B.②③④ C.①③④ D.①②④6.已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P,若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤7.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.8.已知二次函數y=-x2-4x-5,左、右平移該拋物線,頂點恰好落在正比例函數y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-29.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.10.如圖,△ABC中,∠C=90°,D、E是AB、BC上兩點,將△ABC沿DE折疊,使點B落在AC邊上點F處,并且DF∥BC,若CF=3,BC=9,則AB的長是()A. B.15 C. D.911.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.8012.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知關于x的方程x214.拋物線y=﹣x2+4x﹣1的頂點坐標為.15.已知ba=216.⊙M的圓心在一次函數y=x+2圖象上,半徑為1.當⊙M與y軸相切時,點M的坐標為_____.17.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點E,F分別在邊AB,AC上,將△AEF沿直線EF翻折,點A落在點P處,且點P在直線BC上.則線段CP長的取值范圍是____.18.如圖,在邊長為6的菱形ABCD中,分別以各頂點為圓心,以邊長的一半為半徑,在菱形內作四條圓弧,則圖中陰影部分的周長是___結果保留三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.20.(6分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數據:摸球的次數n10020030050080010003000摸到白球的次數m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?21.(6分)如圖,已知矩形ABCD中,連接AC,請利用尺規(guī)作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)22.(8分)已知:二次函數圖象的頂點坐標是(3,5),且拋物線經過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.23.(8分)綜合與實踐﹣﹣旋轉中的數學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發(fā)現:(1)如圖1,若A′B′∥AB,則AA′與CC′的數量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉的過程中,(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.24.(10分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數的圖象經過點,求反比例函數的解析式;(3)當時,若直線與直線和(2)反比例函數的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.25.(10分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.26.(12分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發(fā)勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發(fā)時間x(h)之間的函數關系式.求機場大巴與貨車相遇地到機場C的路程.27.(12分)如圖,在平行四邊形ABCD中,E為BC邊上一點,連結AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據隨機事件,必然事件的定義以及概率的意義對各個小題進行判斷即可.【詳解】解:A.事件:“在地面,向上拋石子后落在地上”,該事件是必然事件,故錯誤.B.體育彩票的中獎率為10%,則買100張彩票可能有10張中獎,故錯誤.C.在同批次10000件產品中抽取100件發(fā)現有5件次品,則這批產品中大約有500件左右的次品,正確.D.擲兩枚硬幣,朝上的一面是一正面一反面的概率為,故錯誤.故選:C.【點睛】考查必然事件,隨機事件的定義以及概率的意義,概率=所求情況數與總情況數之比.2、A【解析】A.是軸對稱圖形不是中心對稱圖形,正確;B.是軸對稱圖形也是中心對稱圖形,錯誤;C.是中心對稱圖形不是軸對稱圖形,錯誤;D.是軸對稱圖形也是中心對稱圖形,錯誤,故選A.【點睛】本題考查軸對稱圖形與中心對稱圖形,正確地識別是解題的關鍵.3、C【解析】試題分析:10名學生的體育成績中39分出現的次數最多,眾數為39;第5和第6名同學的成績的平均值為中位數,中位數為:=39;平均數==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項A,B、D錯誤;故選C.考點:方差;加權平均數;中位數;眾數.4、B【解析】
連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關鍵是利用直徑得出∠ABD=65°.5、C【解析】解:∵A、B是反比函數上的點,∴S△OBD=S△OAC=,故①正確;當P的橫縱坐標相等時PA=PB,故②錯誤;∵P是的圖象上一動點,∴S矩形PDOC=4,∴S四邊形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正確;連接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正確;綜上所述,正確的結論有①③④.故選C.點睛:本題考查的是反比例函數綜合題,熟知反比例函數中系數k的幾何意義是解答此題的關鍵.6、D【解析】
①首先利用已知條件根據邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯誤的;
③利用全等三角形的性質和對頂角相等即可判定③說法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計算即可判定;
⑤連接BD,根據三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯誤的;
因為△APD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【點睛】考查了正方形的性質、全等三角形的性質與判定、三角形的面積及勾股定理,綜合性比較強,解題時要求熟練掌握相關的基礎知識才能很好解決問題.7、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.8、D【解析】
把這個二次函數的圖象左、右平移,頂點恰好落在正比例函數y=﹣x的圖象上,即頂點的橫縱坐標互為相反數,而平移時,頂點的縱坐標不變,即可求得函數解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點坐標是(﹣1,﹣1).由題知:把這個二次函數的圖象左、右平移,頂點恰好落在正比例函數y=﹣x的圖象上,即頂點的橫縱坐標互為相反數.∵左、右平移時,頂點的縱坐標不變,∴平移后的頂點坐標為(1,﹣1),∴函數解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點睛】本題考查了二次函數圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點的橫坐標不變;左右平移時,點的縱坐標不變.同時考查了二次函數的性質,正比例函數y=﹣x的圖象上點的坐標特征.9、B【解析】
根據題意設出未知數,根據甲所用的時間=乙所用的時間,用時間列出分式方程即可.【詳解】設乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【點睛】找出甲所用的時間=乙所用的時間這個關系式是本題解題的關鍵.10、C【解析】
由折疊得到EB=EF,∠B=∠DFE,根據CE+EB=9,得到CE+EF=9,設EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出EF與CE的長,由FD與BC平行,得到一對內錯角相等,等量代換得到一對同位角相等,進而確定出EF與AB平行,由平行得比例,即可求出AB的長.【詳解】由折疊得到EB=EF,∠B=∠DFE,在Rt△ECF中,設EF=EB=x,得到CE=BC-EB=9-x,根據勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴,則AB===,故選C.【點睛】此題考查了翻折變換(折疊問題),涉及的知識有:勾股定理,平行線的判定與性質,平行線分線段成比例,熟練掌握折疊的性質是解本題的關鍵.11、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.12、D【解析】
先根據反比例函數的解析式判斷出函數圖象所在的象限,再根據x1<x2<0<x1,判斷出三點所在的象限,再根據函數的增減性即可得出結論.【詳解】∵反比例函數y=中,k=1>0,∴此函數圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限及三點所在的象限是解答此題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m<9【解析】試題分析:若一元二次方程有兩個不相等的實數根,則根的判別式△=b2﹣4ac>0,建立關于m的不等式,解不等式即可求出m的取值范圍.∵關于x的方程x2﹣6x+m=0有兩個不相等的實數根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考點:根的判別式.14、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y(tǒng)=﹣x2+4x﹣1轉化為頂點式解析式y(tǒng)=﹣(x﹣2)2+3,然后求其頂點坐標為:(2,3).考點:二次函數的性質15、3【解析】
依據ba=23可設a=3k,b=2【詳解】∵ba∴可設a=3k,b=2k,∴aa-b故答案為3.【點睛】本題主要考查了比例的性質及見比設參的數學思想,組成比例的四個數,叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.16、(1,)或(﹣1,)【解析】
設當⊙M與y軸相切時圓心M的坐標為(x,x+2),再根據⊙M的半徑為1即可得出y的值.【詳解】解:∵⊙M的圓心在一次函數y=x+2的圖象上運動,∴設當⊙M與y軸相切時圓心M的坐標為(x,x+2),∵⊙M的半徑為1,∴x=1或x=?1,當x=1時,y=,當x=?1時,y=.∴P點坐標為:(1,)或(?1,).故答案為(1,)或(?1,).【點睛】本題考查了切線的性質與一次函數圖象上點的坐標特征,解題的關鍵是熟練的掌握切線的性質與一次函數圖象上點的坐標特征.17、【解析】
根據點E、F在邊AB、AC上,可知當點E與點B重合時,CP有最小值,當點F與點C重合時CP有最大值,根據分析畫出符合條件的圖形即可得.【詳解】如圖,當點E與點B重合時,CP的值最小,此時BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當點F與點C重合時,CP的值最大,此時CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長的取值范圍是1≤CP≤5,故答案為1≤CP≤5.【點睛】本題考查了折疊問題,能根據點E、F分別在線段AB、AC上,點P在直線BC上確定出點E、F位于什么位置時PC有最大(?。┲凳墙忸}的關鍵.18、【解析】
直接利用已知得出所有的弧的半徑為3,所有圓心角的和為:菱形的內角和,即可得出答案.【詳解】由題意可得:所有的弧的半徑為3,所有圓心角的和為:菱形的內角和,故圖中陰影部分的周長是:6π.故答案為6π.【點睛】本題考查了弧長的計算以及菱形的性質,正確得出圓心角是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.20、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】試題分析:通過題意和表格,可知摸到白球的概率都接近與0.6,因此摸到白球的概率估計值為0.6.21、詳見解析【解析】
利用尺規(guī)過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【點睛】本題主要考查了尺規(guī)作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.22、(1)y=-(x-3)2+5(2)5【解析】
(1)設頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;
(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標,然后根據三角形面積公式求解.【詳解】(1)設此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數法求二次函數解析式,二次函數的性質,二次函數圖象上點的坐標特征,掌握待定系數法求二次函數的解析式是解題的關鍵.23、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】
(1)連接AC、A′C′,根據題意得到點A、A′、C′、C在同一條直線上,根據矩形的性質得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據全等三角形的性質證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據相似多邊形的性質求出B′C′,根據勾股定理計算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經過點O,由旋轉的性質可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【點睛】本題考查的是矩形的性質、旋轉變換的性質、全等三角形的判定和性質,掌握旋轉變換的性質、矩形的性質是解題的關鍵.24、(1),;(2);的取值范圍是:.【解析】
(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【詳解】解:(1)∵直線:經過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.【點睛】本題考查了反比例函數與一次函數的交點,當有兩個函數的時候,著重使用一次函數,體現了方程思想,綜合性較強.25、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解析】
(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 證券行業(yè)2025年三季報總結:泛自營能力決定分化各項業(yè)務全面回暖
- 2025年南京市衛(wèi)生健康委員會、南京市機關事務管理局部分事業(yè)單位公開招聘衛(wèi)技人員備考題庫及完整答案詳解1套
- 2025貴州省重點產業(yè)人才“蓄水池”第四批崗位專項簡化程序公開招聘32人筆試重點題庫及答案解析
- 2025年福建海峽銀行龍巖分行誠聘英才備考題庫及答案詳解參考
- 85%鍋爐課程設計
- 2025中國科學院上海硅酸鹽研究所壓電陶瓷材料與器件課題組招聘博士后備考核心試題附答案解析
- 2025年中國光大銀行光大理財社會招聘備考題庫及完整答案詳解1套
- 《CB 3525-1993船用液壓壓力控制閥基本參數和連接尺寸》專題研究報告解讀
- 2025年鄉(xiāng)村文化節(jié)五年品牌評估與文旅產業(yè)發(fā)展報告
- 中山市人民政府民眾街道辦事處2025年公開招聘合同制工作人員備考題庫及1套完整答案詳解
- 河北金融學院《數字邏輯》2023-2024學年第二學期期末試卷
- 《安全生產法規(guī)培訓》課件
- 刑法學知到智慧樹章節(jié)測試課后答案2024年秋上海財經大學
- 2025屆河北省石家莊市普通高中學校畢業(yè)年級教學質量摸底檢測英語試卷(含答案解析)
- 老年護理??谱o士競聘案例
- 偉大的《紅樓夢》智慧樹知到期末考試答案章節(jié)答案2024年北京大學
- AQ2059-2016 磷石膏庫安全技術規(guī)程
- 噴涂車間操作工安全操作規(guī)程模版(三篇)
- 節(jié)水型小區(qū)總結匯報
- 一年級數學重疊問題練習題
- 事業(yè)單位專業(yè)技術人員崗位工資標準表
評論
0/150
提交評論