綜合解析山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試題(解析卷)_第1頁
綜合解析山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試題(解析卷)_第2頁
綜合解析山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試題(解析卷)_第3頁
綜合解析山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試題(解析卷)_第4頁
綜合解析山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克試題(解析卷)_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山西省孝義市中考數(shù)學(xué)真題分類(勾股定理)匯編專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點(diǎn)F,則BF的長為(

)A. B. C. D.2、有一個邊長為1的正方形,以它的一條邊為斜邊,向外作一個直角三角形,再分別以直角三角形的兩條直角邊為邊,向外各作一個正方形,稱為第一次“生長”(如圖1);再分別以這兩個正方形的邊為斜邊,向外各自作一個直角三角形,然后分別以這兩個直角三角形的直角邊為邊,向外各作一個正方形,稱為第二次“生長”(如圖2)……如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2021次后形成的圖形中所有的正方形的面積和是(

)A.1 B.2020 C.2021 D.20223、《九章算術(shù)》是我國古代數(shù)學(xué)名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)24、如圖是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形的兩直角邊分別是a、b,且,大正方形的面積是9,則小正方形的面積是(

)A.3 B.4 C.5 D.65、如圖,中,,一同學(xué)利用直尺和圓規(guī)完成如下操作:①以點(diǎn)C為圓心,以CB為半徑畫弧,交AB于點(diǎn)G;分別以點(diǎn)G、B為圓心,以大于的長為半徑畫弧,兩弧交點(diǎn)K,作射線CK;②以點(diǎn)B為圓心,以適當(dāng)?shù)拈L為半徑畫弧,交BC于點(diǎn)M,交AB的延長線于N,分別以M、N為圓心,以大于的長為半徑畫弧,兩弧交于點(diǎn)P,作直線BP交AC的延長線于點(diǎn)D,交射線CK于點(diǎn)E.請你觀察圖形,根據(jù)操作結(jié)果解答下列問題;過點(diǎn)D作交AB的延長線于點(diǎn)F,若,,則CE的長為(

)A.13 B. C. D.6、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(

)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積7、若a,b為直角三角形的兩直角邊,c為斜邊,下列選項中不能用來證明勾股定理的是(

)A. B.C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,折疊直角三角形紙片ABC,使得兩個銳角頂點(diǎn)A、C重合,設(shè)折痕為DE,若AB=4,BC=3,則△ADC的周長是__________

2、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.3、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長為________.4、我國古代的數(shù)學(xué)名著《九章算術(shù)》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設(shè)繩索的長為尺,根據(jù)題意,可列方程為__________.5、小聰準(zhǔn)備測量河水的深度,他把一根竹竿插到離岸邊遠(yuǎn)的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.6、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長為________________.7、如圖,將矩形紙片ABCD沿EF折疊,使D點(diǎn)與BC邊的中點(diǎn)D′重合.若BC=8,CD=6,則CF的長為_________________.8、《九章算術(shù)》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點(diǎn)出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠(yuǎn)?解:如圖,設(shè)甲乙兩人出發(fā)后x分鐘相遇.根據(jù)勾股定理可列得方程為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,有一個水池,水面是一個邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請你用所學(xué)知識解答這個問題.2、如圖,AD是△ABC的中線,DE⊥AC于點(diǎn)E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.3、若的三邊,,滿足條件,試判斷的形狀.4、如圖,在筆直的鐵路上A、B兩點(diǎn)相距25km,C、D為兩村莊,,,于A,于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等,求E應(yīng)建在距A多遠(yuǎn)處?5、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長度.6、如圖是三個全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過其中的一個頂點(diǎn),且使該頂點(diǎn)所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個直角三角形紙片的面積是多少?②此時的值是多少?7、在尋找某墜毀飛機(jī)的過程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標(biāo)A、B.于是,一艘搜救艇以16海里/時的速度離開港口O(如圖)沿北偏東40°的方向向目標(biāo)A前進(jìn),同時,另一艘搜救艇也從港口O出發(fā),以12海里/時的速度向著目標(biāo)B出發(fā),1.5小時后,他們同時分別到達(dá)目標(biāo)A、B.此時,他們相距30海里,請問第二艘搜救艇的航行方向是北偏西多少度?-參考答案-一、單選題1、B【解析】【分析】由已知證得,進(jìn)而確定三個內(nèi)角的大小,求得,進(jìn)而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關(guān)知識是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意可得每“生長”一次,面積和增加1,據(jù)此即可求得“生長”了2021次后形成的圖形中所有的正方形的面積和.【詳解】解:如圖,由題意得:SA=1,由勾股定理得:SB+SC=1,則“生長”了1次后形成的圖形中所有的正方形的面積和為2,同理可得:“生長”了2次后形成的圖形中所有的正方形面積和為3,“生長”了3次后形成的圖形中所有正方形的面積和為4,……“生長”了2021次后形成的圖形中所有的正方形的面積和是2022,故選:D【考點(diǎn)】本題考查了勾股數(shù)規(guī)律問題,找到規(guī)律是解題的關(guān)鍵.3、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.4、A【解析】【分析】觀察圖形可知,小正方形的面積=大正方形的面積?4個直角三角形的面積,利用已知(a+b)2=15,大正方形的面積為9,可以得出直角三角形的面積,進(jìn)而求出答案.【詳解】解:∵(a+b)2=15,∴a2+2ab+b2=15,∵大正方形的面積為:a2+b2=9,∴2ab=15?9=6,即ab=3,∴直角三角形的面積為:,∴小正方形的面積為:,故選:A.【考點(diǎn)】此題主要考查了完全平方公式及勾股定理的應(yīng)用,熟練應(yīng)用完全平方公式及勾股定理是解題關(guān)鍵.5、D【解析】【分析】先證明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,設(shè)CE=CD=DF=x,在Rt△ADF中,利用勾股定理構(gòu)建方程求解即可.【詳解】解:由作圖知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,設(shè)EC=CD=DF=x,在Rt△ADF中,則有(12+x)2=x2+182,∴x=,∴CE=,故選D.【考點(diǎn)】本題考查作圖-復(fù)雜作圖,全等三角形的判定和性質(zhì),等腰三角形的判定,以及勾股定理等知識,解題的關(guān)鍵是學(xué)會構(gòu)建方程解決問題,屬于中考常考題型.6、D【解析】【分析】如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.7、A【解析】【分析】由題意根據(jù)圖形的面積得出的關(guān)系,即可證明勾股定理,分別分析即可得出答案【詳解】解:A、不能利用圖形面積證明勾股定理;B、根據(jù)面積得到;C、根據(jù)面積得到,整理得;D、根據(jù)面積得到,整理得.故選:A.【考點(diǎn)】本題考查勾股定理的證明,熟練掌握利用圖形的面積得出的關(guān)系,即可證明勾股定理.二、填空題1、【解析】【分析】首先根據(jù)勾股定理設(shè),求出AD、CD,再求出AB,相加即可.【詳解】解:∵折疊直角三角形紙片,使兩個銳角頂點(diǎn)、重合,∴,設(shè),則,故,∵,∴,即,解得,∴.則在中,由勾股定理得∴AC=5∴周長為AD+CD+AB=.故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用以及折疊的性質(zhì),掌握勾股定理和折疊的性質(zhì)是解題的關(guān)鍵.2、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進(jìn)行標(biāo)注:因?yàn)樗械娜切味际侵苯侨切?,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因?yàn)椋?,所以正方形A,B,C,D的面積和.故答案為:49.【考點(diǎn)】本題主要考查了勾股定理、正方形的性質(zhì),面積的計算,掌握勾股定理是解本題的關(guān)鍵.3、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.4、x2?(x?3)2=82【解析】【分析】設(shè)繩索長為x尺,根據(jù)勾股定理列出方程解答即可.【詳解】解:設(shè)繩索長為x尺,根據(jù)題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出相應(yīng)方程是解題的關(guān)鍵.5、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長構(gòu)成直角三角形,利用勾股定理進(jìn)行計算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點(diǎn)】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.6、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.7、【解析】【分析】設(shè),在中利用勾股定理求出x即可解決問題.【詳解】解:∵是的中點(diǎn),,,∴,由折疊的性質(zhì)知:,設(shè),則,在中,根據(jù)勾股定理得:,即:,解得,∴.故答案為:【考點(diǎn)】本題考查翻折變換、勾股定理,解題的關(guān)鍵是利用翻折不變性解決問題,學(xué)會轉(zhuǎn)化的思想,利用方程的去思考問題,屬于中考??碱}型.8、【解析】【分析】設(shè)甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設(shè)經(jīng)x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中抽象出直角三角形.三、解答題1、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.2、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點(diǎn)E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點(diǎn)F是邊AB的中點(diǎn),∴DF=AB=5.∴DF的長為5.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.3、三角形為直角三角形,理由見解析【解析】【分析】這是一道有關(guān)勾股定理的逆定理、完全平方公式的解答題.把已知條件寫成三個完全平方式的和的形式,再由非負(fù)數(shù)的性質(zhì)求得三邊,根據(jù)勾股定理的逆定理即可判斷△ABC的形狀.【詳解】,,即.,,,,,.,,.,,該三角形為直角三角形.【考點(diǎn)】此題主要考查了勾股定理的逆定理、完全平方公式.此題的關(guān)鍵就是靈活掌握完全平方公式的特點(diǎn),用配方法進(jìn)行恒等變形,在恒等變形的過程中不要改變式子的值.4、E應(yīng)建在距A點(diǎn)15km處【解析】【分析】設(shè),則,根據(jù)勾股定理求得和,再根據(jù)列式計算即可;【詳解】設(shè),則,由勾股定理得:在中,,在中,,由題意可知:,所以:,解得:.所以,E應(yīng)建在距A點(diǎn)15km處.【考點(diǎn)】本題主要考查了勾股定理的實(shí)際應(yīng)用,準(zhǔn)確計算是解題的關(guān)鍵.5、(1)證明見解析;(2)【解析】【分析】(1)先證明再結(jié)合證明從而可得結(jié)論;(2)先證明再證明從而利用等面積法可得的長度.【詳解】解:(1),而(2),,,【考點(diǎn)】本題考查的是三角形的外角的性質(zhì),平行線的性質(zhì)與判定,勾股定理的逆定理的應(yīng)用,證明是解本題的關(guān)鍵.6、(1)(2)①36;②【解析】【分析】(1)設(shè)DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進(jìn)而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進(jìn)而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進(jìn)而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進(jìn)而得出單個直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折疊可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,設(shè)DE=CE=x,則BE=4﹣x,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DE==.(2)解:由AC:BC:AB=3:4:5,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論