版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘭州市重點中學2023-2024學年中考數(shù)學模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點A、B在數(shù)軸上表示的數(shù)的絕對值相等,且,那么點A表示的數(shù)是A. B. C. D.32.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.3.某廠進行技術創(chuàng)新,現(xiàn)在每天比原來多生產(chǎn)30臺機器,并且現(xiàn)在生產(chǎn)500臺機器所需時間與原來生產(chǎn)350臺機器所需時間相同.設現(xiàn)在每天生產(chǎn)x臺機器,根據(jù)題意可得方程為()A. B. C. D.4.若二次函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是()A. B. C. D.5.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°6.下面說法正確的個數(shù)有()①如果三角形三個內角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內角等于另兩個內角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個7.如圖,在平面直角坐標系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉60°為滾動1次,那么當正六邊形ABCDEF滾動2017次時,點F的坐標是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)8.在中國集郵總公司設計的2017年紀特郵票首日紀念截圖案中,可以看作中心對稱圖形的是()A.千里江山圖B.京津冀協(xié)同發(fā)展C.內蒙古自治區(qū)成立七十周年D.河北雄安新區(qū)建立紀念9.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.10.如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.12.已知數(shù)據(jù)x1,x2,…,xn的平均數(shù)是,則一組新數(shù)據(jù)x1+8,x2+8,…,xn+8的平均數(shù)是____.13.不等式組的非負整數(shù)解的個數(shù)是_____.14.如圖,已知⊙O1與⊙O2相交于A、B兩點,延長連心線O1O2交⊙O2于點P,聯(lián)結PA、PB,若∠APB=60°,AP=6,那么⊙O2的半徑等于________.15.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.16.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.三、解答題(共8題,共72分)17.(8分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.18.(8分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.19.(8分)已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點A(3,n).(1)求實數(shù)a的值;(2)設一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,若點C在y軸上,且S△ABC=2S△AOB,求點C的坐標.20.(8分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.21.(8分)先化簡,再求值:﹣÷,其中a=1.22.(10分)如圖,,,,求證:。23.(12分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.24.如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經(jīng)過O、C兩點,且圓心在∠AOB的平分線上.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
如果點A,B表示的數(shù)的絕對值相等,那么AB的中點即為坐標原點.【詳解】解:如圖,AB的中點即數(shù)軸的原點O.
根據(jù)數(shù)軸可以得到點A表示的數(shù)是.
故選:B.【點睛】此題考查了數(shù)軸有關內容,用幾何方法借助數(shù)軸來求解,非常直觀,體現(xiàn)了數(shù)形結合的優(yōu)點確定數(shù)軸的原點是解決本題的關鍵.2、B【解析】
在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數(shù)等知識,解題的關鍵是學會利用參數(shù)解決問題.3、A【解析】
根據(jù)現(xiàn)在生產(chǎn)500臺機器所需時間與原計劃生產(chǎn)350臺機器所需時間相同,所以可得等量關系為:現(xiàn)在生產(chǎn)500臺機器所需時間=原計劃生產(chǎn)350臺機器所需時間.【詳解】現(xiàn)在每天生產(chǎn)x臺機器,則原計劃每天生產(chǎn)(x﹣30)臺機器.依題意得:,故選A.【點睛】本題考查了分式方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.4、D【解析】
由拋物線與x軸有兩個交點可得出△=b2-4ac>0,進而可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=x2-2x+m與x軸有兩個交點,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2-4ac>0時,拋物線與x軸有2個交點”是解題的關鍵.5、D【解析】
根據(jù)平行線的性質即可得到∠2=∠ABC+∠1,即可得出結論.【詳解】∵直線EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故選D.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.6、C【解析】試題分析:①∵三角形三個內角的比是1:2:3,∴設三角形的三個內角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內角之和,三角形的一個內角等于另兩個內角之差,∴三角形一個內角也等于另外兩個內角的和,∴這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內角之和,又一個內角也等于另外兩個內角的和,由此可知這個三角形中有一個內角和它相鄰的外角是相等的,且外角與它相鄰的內角互補,∴有一個內角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內角和定理;2.三角形的外角性質.7、C【解析】
本題是規(guī)律型:點的坐標;坐標與圖形變化-旋轉,正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因為2017÷6=336余1,點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,所以點F滾動2107次時的縱坐標與相同,橫坐標的次數(shù)加1,由此即可解決問題.【詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點F滾動1次時的橫坐標為2,縱坐標為,點F滾動7次時的橫坐標為8,縱坐標為,∴點F滾動2107次時的縱坐標與相同,橫坐標的次數(shù)加1,∴點F滾動2107次時的橫坐標為2017+1=2018,縱坐標為,∴點F滾動2107次時的坐標為(2018,),故選C.【點睛】本題考查坐標與圖形的變化,規(guī)律型:點的坐標,解題關鍵是學會從特殊到一般的探究方法,是中考??碱}型.8、C【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A選項是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B選項不是中心對稱圖形,故本選項錯誤;C選項為中心對稱圖形,故本選項正確;D選項不是中心對稱圖形,故本選項錯誤.故選C.【點睛】本題主要考查了中心對稱圖形的概念:關鍵是找到相關圖形的對稱中心,旋轉180度后與原圖重合.9、D【解析】根據(jù)鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.10、B【解析】
先利用三角函數(shù)計算出∠OAB=60°,再根據(jù)旋轉的性質得∠CAB=30°,根據(jù)切線的性質得OC⊥AC,從而得到∠OAC=30°,然后根據(jù)含30度的直角三角形三邊的關系可得到OC的長.【詳解】解:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°,∵直線l1繞點A逆時針旋轉30°后得到的直線l1剛好與⊙O相切于點C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=OA=1.故選B.【點睛】本題考查了直線與圓的位置關系:設⊙O的半徑為r,圓心O到直線l的距離為d,則直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.也考查了旋轉的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.12、【解析】
根據(jù)數(shù)據(jù)x1,x2,…,xn的平均數(shù)為=(x1+x2+…+xn),即可求出數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù).【詳解】數(shù)據(jù)x1+1,x2+1,…,xn+1的平均數(shù)=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數(shù)的概念,平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).平均數(shù)是表示一組數(shù)據(jù)集中趨勢的量數(shù),它是反映數(shù)據(jù)集中趨勢的一項指標.13、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.14、2【解析】
由題意得出△ABP為等邊三角形,在Rt△ACO2中,AO2=即可.【詳解】由題意易知:PO1⊥AB,∵∠APB=60°∴△ABP為等邊三角形,AC=BC=3∴圓心角∠AO2O1=60°∴在Rt△ACO2中,AO2==2.故答案為2.【點睛】本題考查的知識點是圓的性質,解題的關鍵是熟練的掌握圓的性質.15、2【解析】分析:根據(jù)三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數(shù)這一條件.16、【解析】
設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.三、解答題(共8題,共72分)17、(1)詳見解析;(2);(3).【解析】
(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設CF交AB于H,則CF=2CH=2×.【點睛】本題考查相似三角形的判定和性質、圓周角定理、切線的性質、解直角三角形、線段的垂直平分線的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考常考題型.18、(1)見解析;(2).【解析】
(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據(jù)OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據(jù)弧長公式計算即可.【詳解】解:(1)DE⊥CF.理由如下:∵CF為切線,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴.【點睛】本題考查了全等三角形的判定與性質與弧長的計算,解題的關鍵是熟練的掌握全等三角形的判定與性質與弧長的公式.19、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】
(1)把A(3,n)代入y=(x>0)求得n的值,即可得A點坐標,再把A點坐標代入一次函數(shù)y=ax﹣2可得a的值;(2)先求出一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交點B的坐標,再分兩種情況(①當C點在y軸的正半軸上或原點時;②當C點在y軸的負半軸上時)求點C的坐標即可.【詳解】(1)∵函數(shù)y=(x>0)的圖象過(3,n),∴3n=3,n=1,∴A(3,1)∵一次函數(shù)y=ax﹣2(a≠0)的圖象過點A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點B,∴B(0,﹣2),①當C點在y軸的正半軸上或原點時,設C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②當C點在y軸的負半軸上時,設(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【點睛】本題主要考查了一次函數(shù)與反比例函數(shù)交點問題,解決第(2)問時要注意分類討論,不要漏解.20、(1)y=(x>0);(2)S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】
(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.
(2)由題意得P(t,),然后分別從當點P1在點B的左側時,S=t?(-3)=-3t+9與當點P2在點B的右側時,則S=(t-3)?=9-去分析求解即可求得答案;
(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當點P1在點B的左側時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質.此題難度較大,解題關鍵是注
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年蘭州資源環(huán)境職業(yè)技術大學單招綜合素質筆試模擬試題含詳細答案解析
- 2026年湖南石油化工職業(yè)技術學院單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年甘肅林業(yè)職業(yè)技術學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年寧波衛(wèi)生職業(yè)技術學院單招綜合素質考試模擬試題含詳細答案解析
- 2026年閩江師范高等??茖W校單招綜合素質考試備考試題含詳細答案解析
- 2026年鄭州旅游職業(yè)學院單招綜合素質筆試參考題庫含詳細答案解析
- 2026西藏華勤互聯(lián)科技股份有限公司(人保財險色尼支公司)招聘考試參考試題及答案解析
- 2026年河南科技職業(yè)大學高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年廣西現(xiàn)代職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年上海海洋大學單招綜合素質考試模擬試題含詳細答案解析
- UWB定位是什么協(xié)議書
- 第三終端藥品銷售技巧
- 甲乳外科進修匯報
- 建設銣鹽銫鹽及其副產(chǎn)品加工項目可行性研究報告模板-立項備案
- 設備雙主人管理辦法
- GJB5714A-2023外購產(chǎn)品質量監(jiān)督要求
- 2025版跨境電商代銷合作合同范本
- 2024年麻醉指南專家共識
- 腦梗死取栓術后護理查房
- 測繪成果保密自查報告
- 丁華野教授:下卷:提示為葉狀腫瘤的形態(tài)學改變
評論
0/150
提交評論