版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市行知校2024屆中考數(shù)學(xué)適應(yīng)性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④2.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°3.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.4.下列圖形中,不是軸對稱圖形的是()A. B. C. D.5.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=06.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°7.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD8.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山9.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位10.已知二次函數(shù)y=x2+bx﹣9圖象上A、B兩點關(guān)于原點對稱,若經(jīng)過A點的反比例函數(shù)的解析式是y=,則該二次函數(shù)的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.12.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.13.因式分解:16a3﹣4a=_____.14.分解因式:__________.15.如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.16.如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號都填上)17.已知一組數(shù)據(jù)4,x,5,y,7,9的平均數(shù)為6,眾數(shù)為5,則這組數(shù)據(jù)的中位數(shù)是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標為m.(1)求此拋物線所對應(yīng)的函數(shù)表達式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.19.(5分)小新家、小華家和書店依次在東風(fēng)大街同一側(cè)(忽略三者與東風(fēng)大街的距離).小新小華兩人同時各自從家出發(fā)沿東風(fēng)大街勻速步行到書店買書,已知小新到達書店用了20分鐘,小華的步行速度是40米/分,設(shè)小新、小華離小華家的距離分別為y1(米)、y2(米),兩人離家后步行的時間為x(分),y1與x的函數(shù)圖象如圖所示,根據(jù)圖象解決下列問題:(1)小新的速度為_____米/分,a=_____;并在圖中畫出y2與x的函數(shù)圖象(2)求小新路過小華家后,y1與x之間的函數(shù)關(guān)系式.(3)直接寫出兩人離小華家的距離相等時x的值.20.(8分)如圖,矩形ABCD繞點C順時針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.21.(10分)央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學(xué)生;將條形統(tǒng)計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).22.(10分)桌面上放有4張卡片,正面分別標有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.(1)請用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;(2)若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲?qū)﹄p方公平?23.(12分)如圖,已知直線l與⊙O相離,OA⊥l于點A,交⊙O于點P,OA=5,AB與⊙O相切于點B,BP的延長線交直線l于點C.(1)求證:AB=AC;(2)若,求⊙O的半徑.24.(14分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書“,某校對八年級部分學(xué)生的課外閱讀量進行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個人數(shù)對應(yīng)的頻率就是=0.1.(1)統(tǒng)計表中的a、b、c的值;(2)請將頻數(shù)分布表直方圖補充完整;(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);(4)若該校八年級共有600名學(xué)生,你認為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
解:根據(jù)作圖過程,利用線段垂直平分線的性質(zhì)對各選項進行判斷:根據(jù)作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質(zhì).2、B【解析】
解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點睛】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.3、D【解析】設(shè)直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當(dāng)雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.4、A【解析】
觀察四個選項圖形,根據(jù)軸對稱圖形的概念即可得出結(jié)論.【詳解】根據(jù)軸對稱圖形的概念,可知:選項A中的圖形不是軸對稱圖形.故選A.【點睛】此題主要考查了軸對稱圖形,軸對稱圖形的關(guān)鍵是尋找對稱軸,對稱軸可使圖形兩部分折疊后重合.5、D【解析】試題解析:含有兩個未知數(shù),不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.6、B【解析】
根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等7、D【解析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應(yīng)夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定8、A【解析】
根據(jù)兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關(guān)鍵是熟練的掌握兩點之間直線距離最短.9、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點,故D符合題意;故選D.10、D【解析】
設(shè)A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關(guān)于a和b的方程組,可求得b的值,則可求得二次函數(shù)的對稱軸.【詳解】解:∵A在反比例函數(shù)圖象上,∴可設(shè)A點坐標為(a,).∵A、B兩點關(guān)于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數(shù)圖象上,∴代入二次函數(shù)解析式可得:,解得:或,∴二次函數(shù)對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數(shù)的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,根據(jù)條件先求得b的值是解題的關(guān)鍵,注意掌握關(guān)于原點對稱的兩點的坐標的關(guān)系.二、填空題(共7小題,每小題3分,滿分21分)11、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.12、1.【解析】
直接利用平移的性質(zhì)以及反比例函數(shù)圖象上點的坐標性質(zhì)得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上的性質(zhì),正確得出D點坐標是解題關(guān)鍵.13、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.14、3(m-1)2【解析】試題分析:根據(jù)因式分解的方法,先提公因式,再根據(jù)完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案為:3(m-1)2點睛:因式分解是把一個多項式化為幾個因式積的形式.根據(jù)因式分解的一般步驟:一提(公因式)、二套(平方差公式,完全平方公式)、三檢查(徹底分解).15、-3【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設(shè)A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設(shè)A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉(zhuǎn)30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數(shù)y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)進行線段的轉(zhuǎn)換與計算.16、①②【解析】
只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設(shè)DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.【點睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.17、1.1【解析】【分析】先判斷出x,y中至少有一個是1,再用平均數(shù)求出x+y=11,即可得出結(jié)論.【詳解】∵一組數(shù)據(jù)4,x,1,y,7,9的眾數(shù)為1,∴x,y中至少有一個是1,∵一組數(shù)據(jù)4,x,1,y,7,9的平均數(shù)為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數(shù)為4,1,1,6,7,9,∴這組數(shù)據(jù)的中位數(shù)是×(1+6)=1.1,故答案為:1.1.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)等概念,熟練掌握眾數(shù)、平均數(shù)、中位數(shù)的概念、判斷出x,y中至少有一個是1是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點坐標,根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標減較的縱坐標,可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.【詳解】解:(1)∵點A(-1,0),點B(1,0)在拋物線y=-x2+bx+c上,∴,解得,此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1;(2)∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴C(0,1).設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標代入函數(shù)解析式,得,解得,即BC的函數(shù)解析式為y=-x+1.由P在BC上,F(xiàn)在拋物線上,得P(m,-m+1),F(xiàn)(m,-m2+2m+1).PF=-m2+2m+1-(-m+1)=-m2+1m.(1)如圖,∵此拋物線所對應(yīng)的函數(shù)表達式y(tǒng)=-x2+2x+1,∴D(1,4).∵線段BC與拋物線的對稱軸交于點E,當(dāng)x=1時,y=-x+1=2,∴E(1,2),∴DE=4-2=2.由四邊形PEDF為平行四邊形,得PF=DE,即-m2+1m=2,解得m1=1,m2=2.當(dāng)m=1時,線段PF與DE重合,m=1(不符合題意,舍).當(dāng)m=2時,四邊形PEDF為平行四邊形.考點:二次函數(shù)綜合題.19、(1)60;960;圖見解析;(2)y1=60x﹣240(4≤x≤20);(3)兩人離小華家的距離相等時,x的值為2.4或12.【解析】
(1)先根據(jù)小新到小華家的時間和距離即可求得小新的速度和小華家離書店的距離,然后根據(jù)小華的速度即可畫出y2與x的函數(shù)圖象;(2)設(shè)所求函數(shù)關(guān)系式為y1=kx+b,由圖可知函數(shù)圖像過點(4,0),(20,960),則將兩點坐標代入求解即可得到函數(shù)關(guān)系式;(3)分小新還沒到小華家和小新過了小華家兩種情況,然后分別求出x的值即可.【詳解】(1)由圖可知,小新離小華家240米,用4分鐘到達,則速度為240÷4=60米/分,小新按此速度再走16分鐘到達書店,則a=16×60=960米,小華到書店的時間為960÷40=24分鐘,則y2與x的函數(shù)圖象為:故小新的速度為60米/分,a=960;(2)當(dāng)4≤x≤20時,設(shè)所求函數(shù)關(guān)系式為y1=kx+b(k≠0),將點(4,0),(20,960)代入得:,解得:,∴y1=60x﹣240(4≤x≤20時)(3)由圖可知,小新到小華家之前的函數(shù)關(guān)系式為:y=240﹣6x,①當(dāng)兩人分別在小華家兩側(cè)時,若兩人到小華家距離相同,則240﹣6x=40x,解得:x=2.4;②當(dāng)小新經(jīng)過小華家并追上小華時,兩人到小華家距離相同,則60x﹣240=40x,解得:x=12;故兩人離小華家的距離相等時,x的值為2.4或12.20、(1)見解析;(2)見解析.【解析】
(1)由旋轉(zhuǎn)性質(zhì)可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結(jié)論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結(jié)論成立【詳解】(1)由旋轉(zhuǎn)性質(zhì)可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉(zhuǎn)可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足為N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,F(xiàn)N⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【點睛】本題考查旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),全等三角形的判定,三角函數(shù),關(guān)鍵是構(gòu)造直角三角形.21、(1)200;(2)見解析;(3)126°;(4)240人.【解析】
(1)根據(jù)文史類的人數(shù)以及文史類所占的百分比即可求出總?cè)藬?shù)(2)根據(jù)總?cè)藬?shù)以及生活類的百分比即可求出生活類的人數(shù)以及小說類的人數(shù);(3)根據(jù)小說類的百分比即可求出圓心角的度數(shù);(4)利用樣本中喜歡社科類書籍的百分比來估計總體中的百分比,從而求出喜歡社科類書籍的學(xué)生人數(shù)【詳解】(1)∵喜歡文史類的人數(shù)為76人,占總?cè)藬?shù)的38%,∴此次調(diào)查的總?cè)藬?shù)為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數(shù)占總?cè)藬?shù)的15%,∴喜歡生活類書籍的人數(shù)為:200×15%=30人,∴喜歡小說類書籍的人數(shù)為:200﹣24﹣76﹣30=70人,如圖所示:(3)∵喜歡社科類書籍的人數(shù)為:24人,∴喜歡社科類書籍的人數(shù)占了總?cè)藬?shù)的百分比為:×100%=12%,∴喜歡小說類書籍的人數(shù)占了總分數(shù)的百分比為:100%﹣15%﹣38%﹣12%=35%,∴小說類所在圓心角為:360°×35%=126°;(4)由樣本數(shù)據(jù)可知喜歡“社科類”書籍的學(xué)生人數(shù)占了總?cè)藬?shù)的12%,∴該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù):2000×12%=240人.【點睛】此題考查扇形統(tǒng)計圖和條形統(tǒng)計圖,看懂圖中數(shù)據(jù)是解題關(guān)鍵22、(1)詳見解析;(2)4分.【解析】
(1)根據(jù)題意用列表法求出答案;(2)算出甲乙獲勝的概率,從而求出乙勝一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年移動互聯(lián)網(wǎng)對房地產(chǎn)營銷的影響
- 2025年策劃活動筆試題目及答案
- 2026山東華宇工學(xué)院博士人才招聘考試參考題庫及答案解析
- 2025年汕頭衛(wèi)生事業(yè)單位考試及答案
- 2025年杭州在職教師事業(yè)編考試及答案
- 2025年洛師競選團員筆試及答案
- 2025年事業(yè)編學(xué)校后勤考試筆試及答案
- 2026年金屬材料的晶體結(jié)構(gòu)與力學(xué)性能關(guān)系
- 2026陜西西北工業(yè)大學(xué)飛行器動力潤滑系統(tǒng)研究團隊招聘2人筆試模擬試題及答案解析
- 2026年施工現(xiàn)場職業(yè)病與安全事故案例分析
- UCL介紹教學(xué)課件
- 廣東省衡水金卷2025-2026學(xué)年高三上學(xué)期12月聯(lián)考物理試題(含答案)
- 扁鵲凹凸脈法課件
- 2026年開封大學(xué)單招職業(yè)適應(yīng)性測試題庫及完整答案詳解1套
- 北京市2025北京市體育設(shè)施管理中心應(yīng)屆畢業(yè)生招聘2人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)2套試卷
- 建筑施工現(xiàn)場材料采購流程
- DB31∕T 1234-2020 城市森林碳匯計量監(jiān)測技術(shù)規(guī)程
- 園林綠化施工工藝及注意事項
- 2025年高中語文必修上冊《登泰山記》文言文對比閱讀訓(xùn)練(含答案)
- 2025年金蝶AI蒼穹平臺新一代企業(yè)級AI平臺報告-
- 2026屆山東菏澤一中高三化學(xué)第一學(xué)期期末達標測試試題含解析
評論
0/150
提交評論