版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鹽城市東臺市第五聯(lián)盟中考五模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是()A. B. C. D.2.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點M.若直線l2與x軸的交點為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<23.如圖,將邊長為2cm的正方形OABC放在平面直角坐標系中,O是原點,點A的橫坐標為1,則點C的坐標為()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)4.在平面直角坐標系中,把直線y=x向左平移一個單位長度后,所得直線的解析式為()A.y=x+1B.y=x-1C.y=xD.y=x-25.主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險已經(jīng)覆蓋1350000000人.將1350000000用科學記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10146.如果關于的不等式組的整數(shù)解僅有、,那么適合這個不等式組的整數(shù)、組成的有序數(shù)對共有()A.個 B.個 C.個 D.個7.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐的側面積為()A. B.π C.50 D.50π8.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.9.如圖,在邊長為3的等邊三角形ABC中,過點C垂直于BC的直線交∠ABC的平分線于點P,則點P到邊AB所在直線的距離為()A.33 B.32 C.10.把不等式組的解集表示在數(shù)軸上,下列選項正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在直角坐標系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側部分是_____的(填“上升”或“下降”)12.如圖,矩形ABCD面積為40,點P在邊CD上,PE⊥AC,PF⊥BD,足分別為E,F(xiàn).若AC=10,則PE+PF=_____.13.已知關于x的方程1-xx-214.不等式組的整數(shù)解是_____.15.如果不等式組的解集是x<2,那么m的取值范圍是_____16.如圖,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,則的值等于_____三、解答題(共8題,共72分)17.(8分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經(jīng)過一個定點,若是,請確定該定點的位置,若不是,請說明理由.18.(8分)解不等式組并寫出它的整數(shù)解.19.(8分)無錫市新區(qū)某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為250元,每桶水的進價是5元,規(guī)定銷售單價不得高于12元/桶,也不得低于7元/桶,調(diào)查發(fā)現(xiàn)日均銷售量p(桶)與銷售單價x(元)的函數(shù)圖象如圖所示.(1)求日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系;(2)若該經(jīng)營部希望日均獲利1350元,那么銷售單價是多少?20.(8分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.21.(8分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.22.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點A,(1)求點A的坐標;(2)設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.23.(12分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.24.為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:【詳解】正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點對各選項分析判斷后利用排除法求解:A、“預”的對面是“考”,“祝”的對面是“成”,“中”的對面是“功”,故本選項錯誤;B、“預”的對面是“功”,“?!钡膶γ媸恰翱肌?,“中”的對面是“成”,故本選項錯誤;C、“預”的對面是“中”,“?!钡膶γ媸恰翱肌?,“成”的對面是“功”,故本選項正確;D、“預”的對面是“中”,“?!钡膶γ媸恰俺伞保翱肌钡膶γ媸恰肮Α?,故本選項錯誤.故選C【點睛】考核知識點:正方體的表面展開圖.2、D【解析】
解:∵直線l1與x軸的交點為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點在第一象限,∴,解得0<k<1.故選D.【點睛】兩條直線相交或平行問題;一次函數(shù)圖象上點的坐標特征.3、A【解析】
作AD⊥y軸于D,作CE⊥y軸于E,則∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性質(zhì)得出OC=AO,∠1+∠3=90°,證出∠3=∠1,由AAS證明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出結果.【詳解】解:作AD⊥y軸于D,作CE⊥y軸于E,如圖所示:則∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴點A的坐標為(1,),∴AD=1,OD=.∵四邊形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴點C的坐標為(,﹣1).故選A.【點睛】本題考查了正方形的性質(zhì)、坐標與圖形性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等得出對應邊相等是解決問題的關鍵.4、A【解析】向左平移一個單位長度后解析式為:y=x+1.故選A.點睛:掌握一次函數(shù)的平移.5、B【解析】
科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1350000000用科學記數(shù)法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值及n的值.6、D【解析】
求出不等式組的解集,根據(jù)已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.【詳解】解不等式2x?a≥0,得:x≥,解不等式3x?b≤0,得:x≤,∵不等式組的整數(shù)解僅有x=2、x=3,則1<≤2、3≤<4,解得:2<a≤4、9≤b<12,則a=3時,b=9、10、11;當a=4時,b=9、10、11;所以適合這個不等式組的整數(shù)a、b組成的有序數(shù)對(a,b)共有6個,故選:D.【點睛】本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序實數(shù)對的應用,解此題的根據(jù)是求出a、b的值.7、A【解析】
根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.【詳解】解:圓錐的側面積=?5?5=.故選A.【點睛】本題考查圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.8、D【解析】
如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據(jù)選項A、B、C的條件都不能推出DE∥BC,故選D.9、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點:1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.10、C【解析】
求得不等式組的解集為x<﹣1,所以C是正確的.【詳解】解:不等式組的解集為x<﹣1.故選C.【點睛】本題考查了不等式問題,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.二、填空題(本大題共6個小題,每小題3分,共18分)11、下降【解析】
根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結論.12、4【解析】
由矩形的性質(zhì)可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【詳解】解:如圖,設AC與BD的交點為O,連接PO,
∵四邊形ABCD是矩形
∴AO=CO=5=BO=DO,
∴S△DCO=S矩形ABCD=10,
∵S△DCO=S△DPO+S△PCO,
∴10=×DO×PF+×OC×PE
∴20=5PF+5PE
∴PE+PF=4
故答案為4【點睛】本題考查了矩形的性質(zhì),利用三角形的面積關系解決問題是本題的關鍵.13、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.14、﹣1、0、1【解析】
求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數(shù)解為-1,0,1.故答案為:-1,0,1.【點睛】本題考查的知識點是一元一次不等式組的整數(shù)解,解題關鍵是注意解集范圍從而得出整數(shù)解.15、m≥1.【解析】分析:先解第一個不等式,再根據(jù)不等式組的解集是x<1,從而得出關于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.16、【解析】
根據(jù)平行線分線段成比例定理解答即可.【詳解】解:∵DE∥BC,AD=2BD,∴,∵EF∥AB,∴,故答案為.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.三、解答題(共8題,共72分)17、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;(4)設該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經(jīng)過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質(zhì)知,a+b不存在最大值,當a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設該圓與AC的交點為D,連接DM、DN,∵MN為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經(jīng)過定點D,此定點D在直線AB上且CD的長為.【點睛】本題考查的是圓的綜合問題,解題的關鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應用、反比例函數(shù)的性質(zhì)等知識點.18、不等式組的解集是5<x≤1,整數(shù)解是6,1【解析】
先分別求出兩個不等式的解,求出解集,再根據(jù)整數(shù)的定義得到答案.【詳解】∵解①得:x>5,解不等式②得:x≤1,∴不等式組的解集是5<x≤1,∴不等式組的整數(shù)解是6,1.【點睛】本題考查求一元一次不等式組,解題的關鍵是掌握求一元一次不等式組的方法19、(1)日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=﹣50x+850;(2)該經(jīng)營部希望日均獲利1350元,那么銷售單價是9元.【解析】
(1)設日均銷售p(桶)與銷售單價x(元)的函數(shù)關系為:p=kx+b(k≠0),把(7,500),(12,250)代入,得到關于k,b的方程組,解方程組即可;(2)設銷售單價應定為x元,根據(jù)題意得,(x-5)?p-250=1350,由(1)得到p=-50x+850,于是有(x-5)?(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,滿足7≤x≤12的x的值為所求;【詳解】(1)設日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=kx+b,根據(jù)題意得,解得k=﹣50,b=850,所以日均銷售量p(桶)與銷售單價x(元)的函數(shù)關系為p=﹣50x+850;(2)根據(jù)題意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合題意,舍去),∵銷售單價不得高于12元/桶,也不得低于7元/桶,∴x=13不合題意,答:若該經(jīng)營部希望日均獲利1350元,那么銷售單價是9元.【點睛】本題考查了一元二次方程及一次函數(shù)的應用,解題的關鍵是通過題目和圖象弄清題意,并列出方程或一次函數(shù),用數(shù)學知識解決生活中的實際問題.20、(1)見解析;(2)成立;(3)【解析】
(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.21、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據(jù)坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關鍵是待定系數(shù)法,分三種情況討論.22、(1)A(4,3);(2)28.【解析】
(1)點A是正比例函數(shù)與一次函數(shù)圖像的交點坐標,把與聯(lián)立組成方程組,方程組的解就是點A的橫縱坐標;(2)過點A作x軸的垂線,在Rt△OAD中,由勾股定理求得OA的長,再由BC=OA求得OB的長,用點P的橫坐標a表示出點B、C的坐標,利用BC的長求得a值,根據(jù)即可求得△OBC的面積.【詳解】解:(1)由題意得:,解得,∴點A的坐標為(4,3).(2)過點A作x軸的垂線,垂足為D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.23、(1)證明見解析;(2)證明見解析;(3)1.【解析】
(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何完善機關財務制度
- 養(yǎng)老院老人精神關懷制度
- 疫情防疫物資物資管理制度(3篇)
- 木工暗門施工方案(3篇)
- 小企業(yè)人員基礎管理制度(3篇)
- 開學尋寶活動策劃方案(3篇)
- 漂流書活動策劃方案(3篇)
- 校園文化建設與活動策劃制度
- 施工材料及設備管理制度
- 活動創(chuàng)新發(fā)展制度
- 吸氧并發(fā)癥及護理措施
- 復發(fā)性叢集性頭痛
- 宮頸息肉個案護理
- 新生兒感染護理查房
- 2026屆高考語文專題復習-哲理詩
- (二調(diào))武漢市2025屆高中畢業(yè)生二月調(diào)研考試 生物試卷(含標準答案)
- 2024-2025學年天津市和平區(qū)高三上學期1月期末英語試題(解析版)
- 管理人員應懂財務知識
- ISO9001-2015質(zhì)量管理體系版標準
- 翻建房屋四鄰協(xié)議書范本
- 輸煤棧橋彩鋼板更換施工方案
評論
0/150
提交評論