2024屆江蘇省常州市教育會中考五模數(shù)學試題含解析_第1頁
2024屆江蘇省常州市教育會中考五模數(shù)學試題含解析_第2頁
2024屆江蘇省常州市教育會中考五模數(shù)學試題含解析_第3頁
2024屆江蘇省常州市教育會中考五模數(shù)學試題含解析_第4頁
2024屆江蘇省常州市教育會中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省常州市教育會中考五模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有一矩形紙片ABCD,AB=6,AD=8,將紙片折疊使AB落在AD邊上,折痕為AE,再將△ABE以BE為折痕向右折疊,AE與CD交于點F,則的值是()A.1 B. C. D.2.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>03.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個數(shù)是()A.4 B.3 C.2 D.14.某自行車廠準備生產(chǎn)共享單車4000輛,在生產(chǎn)完1600輛后,采用了新技術(shù),使得工作效率比原來提高了20%,結(jié)果共用了18天完成任務,若設(shè)原來每天生產(chǎn)自行車x輛,則根據(jù)題意可列方程為()A.+=18 B.=18C.+=18 D.=185.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a(chǎn)=2,b=3 B.a(chǎn)=-2,b=-3C.a(chǎn)=-2,b=3 D.a(chǎn)=2,b=-36.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1047.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a(chǎn)6÷a3=a28.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:19.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°10.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°二、填空題(本大題共6個小題,每小題3分,共18分)11.將代入函數(shù)中,所得函數(shù)值記為,又將代入函數(shù)中,所得的函數(shù)值記為,再將代入函數(shù)中,所得函數(shù)值記為…,繼續(xù)下去.________;________;________;________.12.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點D,點P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.13.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.14.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.15.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結(jié)論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)16.已知|x|=3,y2=16,xy<0,則x﹣y=_____.三、解答題(共8題,共72分)17.(8分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經(jīng)過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內(nèi)部一點,在拋物線上是否存在點B,使△MBF的周長最?。咳舸嬖?,求出這個最小值及直線l的解析式;若不存在,請說明理由.18.(8分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.19.(8分)2017年10月31日,在廣州舉行的世界城市日全球主場活動開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價;(2)按學校規(guī)劃,準備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請設(shè)計出最省錢的購買方案,并說明理由.20.(8分)閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(shè)(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結(jié)論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.21.(8分)隨著社會的發(fā)展,通過微信朋友圈發(fā)布自己每天行走的步數(shù)已經(jīng)成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調(diào)查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統(tǒng)計結(jié)果如圖所示:請依據(jù)統(tǒng)計結(jié)果回答下列問題:本次調(diào)查中,一共調(diào)查了位好友.已知A類好友人數(shù)是D類好友人數(shù)的5倍.①請補全條形圖;②扇形圖中,“A”對應扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據(jù)調(diào)查數(shù)據(jù)估計大約有多少位好友6月1日這天行走的步數(shù)超過10000步?22.(10分)(1)計算:sin45°(2)解不等式組:23.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.24.在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由題意知:AB=BE=6,BD=AD﹣AB=2(圖2中),AD=AB﹣BD=4(圖3中);∵CE∥AB,∴△ECF∽△ADF,得,即DF=2CF,所以CF:CD=1:3,故選C.【點睛】本題考查了矩形的性質(zhì),折疊問題,相似三角形的判定與性質(zhì)等,準確識圖是解題的關(guān)鍵.2、C【解析】

首先求出P點坐標,進而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是正確得出P點坐標.3、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據(jù)拋物線與x軸的交點個數(shù)得到b2﹣4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對④進行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.4、B【解析】

根據(jù)前后的時間和是18天,可以列出方程.【詳解】若設(shè)原來每天生產(chǎn)自行車x輛,根據(jù)前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關(guān)鍵點:根據(jù)時間關(guān)系,列出分式方程.5、B【解析】分析:根據(jù)整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關(guān)系,利用它們之間的互逆運算的關(guān)系是解題關(guān)鍵.6、C【解析】

科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、B【解析】分析:本題考察冪的乘方,同底數(shù)冪的乘法,積的乘方和同底數(shù)冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.8、B【解析】

根據(jù)中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質(zhì)求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質(zhì).9、C【解析】

由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.10、B【解析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、22【解析】

根據(jù)數(shù)量關(guān)系分別求出y1,y2,y3,y4,…,不難發(fā)現(xiàn),每3次計算為一個循環(huán)組依次循環(huán),用2006除以3,根據(jù)商和余數(shù)的情況確定y2006的值即可.【詳解】y1=,

y2=?=2,

y3=?=,

y4=?=,

…,

∴每3次計算為一個循環(huán)組依次循環(huán),

∵2006÷3=668余2,

∴y2006為第669循環(huán)組的第2次計算,與y2的值相同,

∴y2006=2,

故答案為;2;;2.【點睛】本題考查反比例函數(shù)的定義,解題的關(guān)鍵是多運算找規(guī)律.12、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.【點睛】此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于利用等腰三角形的“三線合一13、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:14、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質(zhì).15、①②④【解析】

由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質(zhì),可得②④正確,③錯誤,又由勾股定理求得AC=1.【詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點睛】此題考查了平行四邊形的性質(zhì)、矩形的判定與性質(zhì)以及勾股定理.注意證得?ABCD是矩形是解此題的關(guān)鍵.16、±3【解析】分析:本題是絕對值、平方根和有理數(shù)減法的綜合試題,同時本題還滲透了分類討論的數(shù)學思想.詳解:因為|x|=1,所以x=±1.因為y2=16,所以y=±2.又因為xy<0,所以x、y異號,當x=1時,y=-2,所以x-y=3;當x=-1時,y=2,所以x-y=-3.故答案為:±3.點睛:本題是一道綜合試題,本題中有分類的數(shù)學思想,求解時要注意分類討論.三、解答題(共8題,共72分)17、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數(shù)法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當點運動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數(shù)求出,再聯(lián)立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設(shè)B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當點B在點B1處時,△MBF的周長最小∵M(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì),等腰三角形的性質(zhì),動點與最值問題等,熟練掌握各個知識點,結(jié)合圖象作出合理輔助線,進行適當?shù)霓D(zhuǎn)化是解答關(guān)鍵.18、(1)證明見解析;(2).【解析】

(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據(jù)切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD為半徑,∴DP是⊙O切線.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴圖中陰影部分的面積19、(1)甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)當購買1棵甲種樹、133棵乙種樹時,購買費用最低,理由見解析.【解析】

(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購買甲種樹a棵,則購買乙種樹(200-a)棵,根據(jù)甲種樹的數(shù)量不少于乙種樹的數(shù)量的可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價比乙種樹的單價貴,即可找出最省錢的購買方案.【詳解】解:(1)設(shè)甲種樹的單價為x元/棵,乙種樹的單價為y元/棵,根據(jù)題意得:

,解得:答:甲種樹的單價為50元/棵,乙種樹的單價為40元/棵.(2)設(shè)購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據(jù)題意得:解得:∵a為整數(shù),∴a≥1.∵甲種樹的單價比乙種樹的單價貴,∴當購買1棵甲種樹、133棵乙種樹時,購買費用最低.【點睛】一元一次不等式的應用,二元一次方程組的應用,讀懂題目,是解題的關(guān)鍵.20、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解析】

(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設(shè)m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數(shù),∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.21、(1)30;(2)①補圖見解析;②120;③70人.【解析】分析:(1)由B類別人數(shù)及其所占百分比可得總?cè)藬?shù);(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)總?cè)藬?shù)列方程求得a的值,從而補全圖形;②用360°乘以A類別人數(shù)所占比例可得;③總?cè)藬?shù)乘以樣本中C、D類別人數(shù)和所占比例.詳解:(1)本次調(diào)查的好友人數(shù)為6÷20%=30人,故答案為:30;(2)①設(shè)D類人數(shù)為a,則A類人數(shù)為5a,根據(jù)題意,得:a+6+12+5a=30,解得:a=2,即A類人數(shù)為10、D類人數(shù)為2,補全圖形如下:②扇形圖中,“A”對應扇形的圓心角為360°×=120°,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論