版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟鋼高中2024屆高三3月份模擬考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.2.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數(shù)的值為B.負相關,相關系數(shù)的值為C.負相關,相關系數(shù)的值為D.正相關,相關負數(shù)的值為3.函數(shù)的對稱軸不可能為()A. B. C. D.4.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.5.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.6.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.7.某設備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年8.設,,則()A. B. C. D.9.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.10.波羅尼斯(古希臘數(shù)學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數(shù)k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.11.已知,則()A.2 B. C. D.312.下列幾何體的三視圖中,恰好有兩個視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長寬高互不相等的長方體二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),則不等式的解集為____.14.設變量,滿足約束條件,則目標函數(shù)的最小值為______.15.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.16.已知,滿足約束條件,則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.18.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經過點,試判斷函數(shù)的零點個數(shù)并證明.19.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和.20.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調遞增區(qū)間及圖象的對稱軸方程.22.(10分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點,是否存在實數(shù)k使得以線段為直徑的圓恰好經過坐標原點O?若存在,求出k的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.2、C【解析】
根據(jù)正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數(shù)為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區(qū)別.掌握正負相關的定義是解題基礎.3、D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.4、D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.5、B【解析】
根據(jù)角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.6、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結合奇偶性計算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.7、D【解析】
根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.8、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.9、A【解析】
由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.10、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.11、A【解析】
利用分段函數(shù)的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質,是基礎題,解題時注意函數(shù)性質的合理應用.12、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個三視圖都是相等的正方形,球的三個三視圖都是相等的圓,圓錐的三個三視圖有一個是圓,另外兩個是全等的等腰三角形,長寬高互不相等的長方體的三視圖是三個兩兩不全等的矩形.故選:C.【點睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉化為分段函數(shù)處理。14、-8【解析】
通過約束條件,畫出可行域,將問題轉化為直線在軸截距最大的問題,通過圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當過時,在軸截距最大本題正確結果:【點睛】本題考查線性規(guī)劃中的型最值的求解問題,關鍵在于將所求最值轉化為在軸截距的問題.15、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質,考查直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉化思想方法,屬于中檔題.16、【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點處取最小值為.故答案為:【點睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結合思想,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、t=1【解析】
把變形為結合基本不等式進行求解.【詳解】因為即,當且僅當,,時,上述等號成立,所以,即,又x,y,z>0,所以xyzt=1.【點睛】本題主要考查基本不等式的應用,利用基本不等式求解最值時要注意轉化為適用形式,同時要關注不等號是否成立,側重考查數(shù)學運算的核心素養(yǎng).18、(1)見解析,(2)函數(shù)存在唯一零點.【解析】
(1)首先求出導函數(shù),利用導數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(2)由(1)求出函數(shù),令方程可轉化為記,利用導數(shù)判斷函數(shù)在上單調遞增,根據(jù),由零點存在性定理即可求出零點個數(shù).【詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數(shù)在上單調遞增,又所以函數(shù)在區(qū)間上存在唯一零點,即函數(shù)存在唯一零點.【點睛】本題考查了導數(shù)的幾何意義、直線過定點、利用導數(shù)研究函數(shù)的單調性、零點存在性定理,屬于難題.19、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進而求出數(shù)列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項公式.數(shù)列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.20、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.21、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關系式的變換的應用求出結果.(2)首先把函數(shù)的關系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)的性質的應用求出結果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦型函數(shù)的性質的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.22、(1);(2)存在,當時,以線段為直徑的圓恰好經過坐標原點O.【解析】
(1)設橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實數(shù)使得以線段為直徑的圓恰好經過坐標原點.設點,,,,將直線的方程代入,化簡,利用韋達定理,結合向量的數(shù)量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026廣西百色市西林縣馬蚌鎮(zhèn)八大河希望學校招聘后勤工作人員1人備考題庫(含答案詳解)
- 2025四川雅安石棉縣佳業(yè)勞務派遣有限公司招聘石棉縣應急救援指揮中心輔助人員1人備考題庫完整答案詳解
- 廣州2025年廣東廣州市越秀區(qū)光塔街招聘出管員(網(wǎng)格員)筆試歷年參考題庫附帶答案詳解
- 2026同濟大學附屬養(yǎng)志康復醫(yī)院(上海市陽光康復中心)招聘備考題庫有完整答案詳解
- 2025南平建陽法院招聘信息技術人員1名備考題庫完整答案詳解
- 2026共青團陽新縣委招聘公益性崗位人員3人備考題庫(湖北)及答案詳解1套
- 2025廣西柳州市林業(yè)科學研究所招聘編外聘用人員1人備考題庫有答案詳解
- 四川2025年四川大竹縣縣級機關事業(yè)單位考調90人筆試歷年參考題庫附帶答案詳解
- 2026中仁正和工程設計集團有限公司錫林郭勒盟分公司招聘4人備考題庫(內蒙古)及參考答案詳解一套
- 2026廣東茂名市電白區(qū)赴高校招聘急需緊缺人才32人備考題庫(第二次編制)及參考答案詳解1套
- 餐飲企業(yè)后廚食品安全培訓資料
- 國網(wǎng)安全家園題庫及答案解析
- 足踝外科進修匯報
- 【12篇】新部編版小學語文六年級上冊【課內外閱讀理解專項訓練(完整版)】含答案
- 船艇涂裝教學課件
- 招標績效考核方案(3篇)
- 500萬的咨詢合同范本
- 2025年貸款房屋轉贈協(xié)議書
- 2025天津市個人房屋租賃合同樣本
- 中藥熱熨敷技術及操作流程圖
- 鶴壁供熱管理辦法
評論
0/150
提交評論