版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省省級示范高中聯(lián)合體2024年高考數(shù)學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為圓:上任意一點,,若線段的垂直平分線交直線于點,則點的軌跡方程為()A. B.C.() D.()2.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.3.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.4.已知,橢圓的方程,雙曲線的方程為,和的離心率之積為,則的漸近線方程為()A. B. C. D.5.已知復數(shù)和復數(shù),則為A. B. C. D.6.已知復數(shù),滿足,則()A.1 B. C. D.57.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.8.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.9.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.10.已知復數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.311.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.12.的展開式中的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.14.在中,已知,,則A的值是______.15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.過點,且圓心在直線上的圓的半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某早餐店對一款新口味的酸奶進行了一段時間試銷,定價為元/瓶.酸奶在試銷售期間足量供應,每天的銷售數(shù)據(jù)按照,,,分組,得到如下頻率分布直方圖,以不同銷量的頻率估計概率.從試銷售期間任選三天,求其中至少有一天的酸奶銷量大于瓶的概率;試銷結束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱瓶,批發(fā)成本元;小箱每箱瓶,批發(fā)成本元.由于酸奶保質(zhì)期短,當天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計算時每個分組取中間值作為代表,比如銷量為時看作銷量為瓶).①設早餐店批發(fā)一大箱時,當天這款酸奶的利潤為隨機變量,批發(fā)一小箱時,當天這款酸奶的利潤為隨機變量,求和的分布列和數(shù)學期望;②以利潤作為決策依據(jù),該早餐店應每天批發(fā)一大箱還是一小箱?注:銷售額=銷量×定價;利潤=銷售額-批發(fā)成本.18.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.19.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預算(全年按9000小時計算)?并說明理由.20.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.21.(12分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.22.(10分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關鍵.2、B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.3、B【解析】
變形為,由得,轉(zhuǎn)化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)4、A【解析】
根據(jù)橢圓與雙曲線離心率的表示形式,結合和的離心率之積為,即可得的關系,進而得雙曲線的離心率方程.【詳解】橢圓的方程,雙曲線的方程為,則橢圓離心率,雙曲線的離心率,由和的離心率之積為,即,解得,所以漸近線方程為,化簡可得,故選:A.【點睛】本題考查了橢圓與雙曲線簡單幾何性質(zhì)應用,橢圓與雙曲線離心率表示形式,雙曲線漸近線方程求法,屬于基礎題.5、C【解析】
利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.6、A【解析】
首先根據(jù)復數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數(shù)求模問題,考查復數(shù)的除法運算,屬于基礎題.7、A【解析】
先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.8、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.9、B【解析】設折成的四棱錐的底面邊長為,高為,則,故由題設可得,所以四棱錐的體積,應選答案B.10、A【解析】,故,故選A.11、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.12、C【解析】由題意,根據(jù)二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數(shù)為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數(shù)、整數(shù)冪的運算等有關方面的知識與技能,屬于中低檔題,也是??贾R點.在二項式定理的應用中,注意區(qū)分二項式系數(shù)與系數(shù),先求出通項公式,再根據(jù)所求問題,通過確定未知的次數(shù),求出,將的值代入通項公式進行計算,從而問題可得解.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
由二次方程有解的條件,結合輔助角公式和正弦函數(shù)的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.14、【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎題.15、20【解析】
設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【詳解】設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【點睛】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16、【解析】
根據(jù)弦的垂直平分線經(jīng)過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經(jīng)過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、;①詳見解析;②應該批發(fā)一大箱.【解析】
酸奶每天銷量大于瓶的概率為,不大于瓶的概率為,設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.利用對立事件概率公式求解即可.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況,分別求出相應概率,列出分布列,求出的數(shù)學期望,若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況,分別求出相應概率,由此求出的分布列和數(shù)學期望;②根據(jù)①中的計算結果,,從而早餐應該批發(fā)一大箱.【詳解】解:根據(jù)圖中數(shù)據(jù),酸奶每天銷量大于瓶的概率為,不大于瓶的概率為.設“試銷售期間任選三天,其中至少有一天的酸奶銷量大于瓶”為事件,則表示“這三天酸奶的銷量都不大于瓶”.所以.①若早餐店批發(fā)一大箱,批發(fā)成本為元,依題意,銷量有,,,四種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元)若早餐店批發(fā)一小箱,批發(fā)成本為元,依題意,銷量有,兩種情況.當銷量為瓶時,利潤為元;當銷量為瓶時,利潤為元.隨機變量的分布列為所以(元).②根據(jù)①中的計算結果,,所以早餐店應該批發(fā)一大箱.【點睛】本題考查概率,離散型隨機變量的分布列、數(shù)學期望的求法,考查古典概型、對立事件概率計算公式等基礎知識,屬于中檔題.18、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求數(shù)列的前項和.試題解析:(1)由題意知當時,,當時,,所以.設數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用“錯位相減法”求數(shù)列的前項和.【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用“錯位相減法”求數(shù)列的前項和,屬于難題.“錯位相減法”求數(shù)列的前項和是重點也是難點,利用“錯位相減法”求數(shù)列的和應注意以下幾點:①掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);②相減時注意最后一項的符號;③求和時注意項數(shù)別出錯;④最后結果一定不能忘記等式兩邊同時除以.19、(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結論.【詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個時間段需要檢查污染源處理系統(tǒng)的概率為.(2)設某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調(diào)遞增;當時,,在上單調(diào)遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發(fā)生的概率、期望,及運用求導函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類題目解決的關鍵在于將生活中的量轉(zhuǎn)化為數(shù)學中和量,屬于中檔題.20、(1),;(2)證明見解析.【解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯(lián)立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設,則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數(shù)的關系;(2)有關直線與拋物
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層醫(yī)療衛(wèi)生改革方案研究
- Java程序設計技術規(guī)范及要點
- 2026年人際溝通技巧有效溝通策略題庫
- 2026年客戶服務團隊溝通與問題解決能力測試
- 2026年英語口語與聽力進階訓練試題集
- 2026年藝術學院入學模擬試題集
- 2026年建筑設計師專業(yè)水平認證題庫
- 2026年市場營銷專業(yè)考試案例分析題集
- 2026年市場營銷經(jīng)理市場分析試題
- 2026年品牌營銷總監(jiān)晉升執(zhí)行副總裁實務題庫
- 2026年及未來5年市場數(shù)據(jù)中國民間美術文化遺產(chǎn)行業(yè)市場競爭格局及發(fā)展趨勢預測報告
- 2026西藏自治區(qū)教育考試院招聘非編工作人員11人備考考試試題及答案解析
- 江西省南昌市2025-2026學年上學期期末八年級數(shù)學試卷(含答案)
- 2026內(nèi)蒙古鄂爾多斯市伊金霍洛旗九泰熱力有限責任公司招聘熱電分公司專業(yè)技術人員16人筆試模擬試題及答案解析
- 2025至2030中國現(xiàn)代物流業(yè)智慧化轉(zhuǎn)型與多式聯(lián)運體系構建研究報告
- 馬年猜猜樂(猜地名)打印版
- 2026江蘇省人民醫(yī)院消化內(nèi)科工勤人員招聘2人考試備考題庫及答案解析
- 《大學生創(chuàng)新創(chuàng)業(yè)指導(慕課版第3版)》完整全套教學課件-1
- 2025年浙江省嘉興市嘉善縣保安員考試真題附答案解析
- AFP急性弛緩性麻痹培訓課件
- GDPR框架下跨境醫(yī)療數(shù)據(jù)治理策略
評論
0/150
提交評論