江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題含解析_第1頁
江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題含解析_第2頁
江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題含解析_第3頁
江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題含解析_第4頁
江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

江西省奉新一中、南豐一中等六校2024年高考沖刺模擬數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-52.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③3.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.4.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限5.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.6.已知集合,集合,則().A. B.C. D.7.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.328.已知復數(shù),,則()A. B. C. D.9.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.10.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.11.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.4012.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.14.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺.”則每天增加的數(shù)量為____尺,設該女子一個月中第n天所織布的尺數(shù)為,則______.15.若存在直線l與函數(shù)及的圖象都相切,則實數(shù)的最小值為___________.16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?18.(12分)已知橢圓()經(jīng)過點,離心率為,、、為橢圓上不同的三點,且滿足,為坐標原點.(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.19.(12分)如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標為,求的值.20.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.21.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.22.(10分)已知函數(shù),其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.2、D【解析】

對于①,利用拋物線的定義,利用可判斷;對于②,設直線的方程為,與拋物線聯(lián)立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點關于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點睛】本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于較難題.3、B【解析】

奇函數(shù)滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.4、D【解析】

設,由,得,利用復數(shù)相等建立方程組即可.【詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.5、A【解析】

設坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.6、A【解析】

算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學生的基本運算能力,是一道基礎題.7、B【解析】

由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解?!驹斀狻坑深}意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解。8、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.9、C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.10、D【解析】

設出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設,,聯(lián)立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關系的方式,然后結(jié)合導數(shù)或者利用函數(shù)值域的方法來求解最值.11、C【解析】

設出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.12、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,

∴,

則,

又,即切點坐標為(1,0),

則函數(shù)在點(1,f(1))處的切線方程為,

即,

故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,根據(jù)導數(shù)和切線斜率之間的關系是解決本題的關鍵.14、52【解析】

設從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,

則,

解得,即每天增加的數(shù)量為,

,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.15、【解析】

設直線l與函數(shù)及的圖象分別相切于,,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為,所以函數(shù)的圖象在點處的切線方程為,即,因為存在直線l與函數(shù)及的圖象都相切,所以,所以,令,設,則,當時,,函數(shù)單調(diào)遞減;當時,,函數(shù)單調(diào)遞增,所以,所以實數(shù)的最小值為.16、【解析】

利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關系,然后轉(zhuǎn)化求解的值.【詳解】設等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應用,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】

(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.18、(1)證明見解析;(2).【解析】

(1)首先根據(jù)題中條件求出橢圓方程,設、、點坐標,根據(jù)利用坐標表示出即可得證;(2)設直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設,,,由為的重心,;又因為,,,,(2)當?shù)男甭什淮嬖跁r:,,,代入橢圓得,,,當?shù)男甭蚀嬖跁r:設直線為,這里,由,,根據(jù)韋達定理有,,,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標關系,直線與橢圓所交弦長,屬于一般題.19、(1)(2)【解析】

(1)依題意,任意角的三角函數(shù)的定義可知,,進而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點,且點的橫坐標是,得出,進而得出,利用正弦的和差公式即可求出,結(jié)合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標是,所以,從而.于是.因為為銳角,為鈍角,所以從而.【點睛】本題本題考查正弦函數(shù)余弦函數(shù)的定義,考查正弦余弦的兩角和差公式,是基礎題.20、(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上線人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數(shù)分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論