福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

福建省龍巖市武平縣第二中學(xué)2024屆高三第一次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列不等式成立的是()A. B. C. D.2.如圖,在正四棱柱中,,分別為的中點(diǎn),異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且3.記其中表示不大于x的最大整數(shù),若方程在在有7個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍()A. B. C. D.4.已知正四棱錐的側(cè)棱長與底面邊長都相等,是的中點(diǎn),則所成的角的余弦值為()A. B. C. D.5.已知定義在上的函數(shù),若函數(shù)為偶函數(shù),且對(duì)任意,,都有,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.7.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,若對(duì)任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.38.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動(dòng)點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長度B.伸長到原來的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長度C.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長度D.縮短到原來的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長度10.雙曲線的漸近線方程是()A. B. C. D.11.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.在中,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在直角梯形中,,、分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點(diǎn)、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.14.若,則=______,=______.15.已知,復(fù)數(shù)且(為虛數(shù)單位),則__________,_________.16.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的解集包含,求的取值范圍.18.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).(1)求的長;(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.19.(12分)已知,均為正數(shù),且.證明:(1);(2).20.(12分)已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.21.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.22.(10分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個(gè)選項(xiàng)的正誤.【詳解】對(duì)于,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞減,,錯(cuò)誤;對(duì)于,,,,錯(cuò)誤;對(duì)于,在上單調(diào)遞增,,正確.故選:.【點(diǎn)睛】本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)的單調(diào)性.2、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點(diǎn)睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運(yùn)算求解的能力,屬于中檔題.3、D【解析】

做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個(gè)交點(diǎn),而函數(shù)在上有3個(gè)交點(diǎn),則在上有4個(gè)不同的交點(diǎn),數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個(gè)不同的實(shí)數(shù)根,則在上有4個(gè)不同的實(shí)數(shù)根,當(dāng)直線經(jīng)過時(shí),;當(dāng)直線經(jīng)過時(shí),,可知當(dāng)時(shí),直線與的圖象在上有4個(gè)交點(diǎn),即方程,在上有4個(gè)不同的實(shí)數(shù)根.故選:D.【點(diǎn)睛】本題考查方程根的個(gè)數(shù)求參數(shù),利用函數(shù)零點(diǎn)和方程之間的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)是解題的關(guān)鍵,運(yùn)用數(shù)形結(jié)合是解決函數(shù)零點(diǎn)問題的基本思想,屬于中檔題.4、C【解析】試題分析:設(shè)的交點(diǎn)為,連接,則為所成的角或其補(bǔ)角;設(shè)正四棱錐的棱長為,則,所以,故C為正確答案.考點(diǎn):異面直線所成的角.5、A【解析】

根據(jù)題意,分析可得函數(shù)的圖象關(guān)于對(duì)稱且在上為減函數(shù),則不等式等價(jià)于,解得的取值范圍,即可得答案.【詳解】解:因?yàn)楹瘮?shù)為偶函數(shù),所以函數(shù)的圖象關(guān)于對(duì)稱,因?yàn)閷?duì)任意,,都有,所以函數(shù)在上為減函數(shù),則,解得:.即實(shí)數(shù)的取值范圍是.故選:A.【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性與單調(diào)性的綜合應(yīng)用,涉及不等式的解法,屬于綜合題.6、B【解析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【點(diǎn)睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c(diǎn)問題,屬于中檔題.7、C【解析】

若對(duì)任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.8、D【解析】

求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動(dòng)點(diǎn)M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動(dòng)點(diǎn)軌跡,屬于中檔題.9、B【解析】

分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),

得到再將得到的圖象向左平移個(gè)單位長度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.10、C【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.11、B【解析】

利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B?!军c(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。12、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.二、填空題:本題共4小題,每小題5分,共20分。13、①③【解析】

連接、交于點(diǎn),取的中點(diǎn),證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質(zhì)定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結(jié)合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設(shè)平面與平面垂直,利用面面垂直的性質(zhì)定理可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對(duì)于命題①,連接、交于點(diǎn),取的中點(diǎn)、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點(diǎn),為的中點(diǎn),且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對(duì)于命題②,,平面,平面,平面,若四點(diǎn)、、、共面,則這四點(diǎn)可確定平面,則,平面平面,由線面平行的性質(zhì)定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯(cuò)誤;對(duì)于命題③,連接、,設(shè),則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內(nèi)的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對(duì)于命題④,假設(shè)平面與平面垂直,過點(diǎn)在平面內(nèi)作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯(cuò)誤.故答案為:①③.【點(diǎn)睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點(diǎn)共面的判斷,考查推理能力,屬于中等題.14、10【解析】

①根據(jù)換底公式計(jì)算即可得解;②根據(jù)同底對(duì)數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點(diǎn)睛】此題考查對(duì)數(shù)的基本運(yùn)算,涉及換底公式和同底對(duì)數(shù)加法運(yùn)算,屬于基礎(chǔ)題目.15、【解析】∵復(fù)數(shù)且∴∴∴∴,故答案為,16、6【解析】

已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)對(duì)范圍分類整理得:,分類解不等式即可.(2)利用已知轉(zhuǎn)化為“當(dāng)時(shí),”恒成立,利用絕對(duì)值不等式的性質(zhì)可得:,問題得解.【詳解】當(dāng)時(shí),,當(dāng)時(shí),由得,解得;當(dāng)時(shí),無解;當(dāng)時(shí),由得,解得,所以的解集為(2)的解集包含等價(jià)于在上恒成立,當(dāng)時(shí),等價(jià)于恒成立,而,∴,故滿足條件的的取值范圍是【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,還考查了轉(zhuǎn)化能力及絕對(duì)值不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.18、(1);(2).【解析】

(1)將直線的參數(shù)方程化為直角坐標(biāo)方程,由點(diǎn)到直線距離公式可求得圓心到直線距離,結(jié)合垂徑定理即可求得的長;(2)將的極坐標(biāo)化為直角坐標(biāo),將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個(gè)交點(diǎn)坐標(biāo),由中點(diǎn)坐標(biāo)公式求得的坐標(biāo),再根據(jù)兩點(diǎn)間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標(biāo)方程為,即直線與曲線交于兩點(diǎn).則圓心坐標(biāo)為,半徑為1,則由點(diǎn)到直線距離公式可知,所以.(2)點(diǎn)的極坐標(biāo)為,化為直角坐標(biāo)可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點(diǎn)坐標(biāo)為,所以,由兩點(diǎn)間距離公式可得.【點(diǎn)睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,點(diǎn)到直線距離公式應(yīng)用,兩點(diǎn)間距離公式的應(yīng)用,直線與圓交點(diǎn)坐標(biāo)求法,屬于基礎(chǔ)題.19、(1)見解析(2)見解析【解析】

(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴.(2).當(dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2)是,定點(diǎn)坐標(biāo)為或【解析】

(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,聯(lián)立方程得到,,計(jì)算點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,圓的方程可化為,得到答案.【詳解】(1)根據(jù)題意:,因?yàn)?,所以,所以橢圓的方程為.(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,把直線的方程代入橢圓方程化簡得到,所以,,所以,,因?yàn)橹本€的斜率,所以直線的方程,所以點(diǎn)的坐標(biāo)為,同理,點(diǎn)的坐標(biāo)為,故以為直徑的圓的方程為,又因?yàn)?,,所以圓的方程可化為,令,則有,所以定點(diǎn)坐標(biāo)為或.【點(diǎn)睛】本題考查了橢圓方程,圓過定點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21、(Ⅰ);(Ⅱ);(Ⅲ)證明見解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論