版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省曲靖市陸良縣第八中學2024年高考仿真卷數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb2.已知拋物線的焦點為,準線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.23.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.4.網(wǎng)絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月5.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.6.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.7.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.8.已知復數(shù)z滿足i?z=2+i,則z的共軛復數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i9.已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是()A. B.C. D.10.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.11.若集合,,則=()A. B. C. D.12.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.設函數(shù),當時,記最大值為,則的最小值為______.15.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.16.甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,則“甲、乙兩人恰好在同一企業(yè)”的概率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點,,證明:.18.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.19.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.20.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.21.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.22.(10分)在考察疫情防控工作中,某區(qū)衛(wèi)生防控中心提出了“要堅持開展愛國衛(wèi)生運動,從人居環(huán)境改善、飲食習慣、社會心理健康、公共衛(wèi)生設施等多個方面開展,特別是要堅決杜絕食用野生動物的陋習,提倡文明健康、綠色環(huán)保的生活方式”的要求.某小組通過問卷調(diào)查,隨機收集了該區(qū)居民六類日常生活習慣的有關數(shù)據(jù).六類習慣是:(1)衛(wèi)生習慣狀況類;(2)垃圾處理狀況類;(3)體育鍛煉狀況類;(4)心理健康狀況類;(5)膳食合理狀況類;(6)作息規(guī)律狀況類.經(jīng)過數(shù)據(jù)整理,得到下表:衛(wèi)生習慣狀況類垃圾處理狀況類體育鍛煉狀況類心理健康狀況類膳食合理狀況類作息規(guī)律狀況類有效答卷份數(shù)380550330410400430習慣良好頻率0.60.90.80.70.650.6假設每份調(diào)查問卷只調(diào)查上述六類狀況之一,各類調(diào)查是否達到良好標準相互獨立.(1)從小組收集的有效答卷中隨機選取1份,求這份試卷的調(diào)查結果是膳食合理狀況類中習慣良好者的概率;(2)從該區(qū)任選一位居民,試估計他在“衛(wèi)生習慣狀況類、體育鍛煉狀況類、膳食合理狀況類”三類習慣方面,至少具備兩類良好習慣的概率;(3)利用上述六類習慣調(diào)查的排序,用“”表示任選一位第k類受訪者是習慣良好者,“”表示任選一位第k類受訪者不是習慣良好者().寫出方差,,,,,的大小關系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.2、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設與軸的交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.3、A【解析】
由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點,則,.故選:A.【點睛】本題考查三角函數(shù)定義、二倍角公式,考查計算求解能力,屬于基礎題.4、C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應用,基礎題.5、B【解析】
根據(jù)焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.6、A【解析】
根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.7、D【解析】
求解的導函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當時,,故在單調(diào)遞減;不妨設,而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.8、D【解析】
兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數(shù)為1+2i,選D.【點睛】的共軛復數(shù)為9、A【解析】
由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點的坐標為,又,所以.故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.10、B【解析】
奇函數(shù)滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.11、C【解析】試題分析:化簡集合故選C.考點:集合的運算.12、A【解析】
設E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結果.【詳解】設E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為單位向量的夾角為,所以,所以==.14、【解析】
易知,設,,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設,,令,當時,,所以單調(diào)遞減令,當時,,所以單調(diào)遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.15、【解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎題.16、【解析】
求出所有可能,找出符合可能的情況,代入概率計算公式.【詳解】解:甲、乙、丙、丁4名大學生參加兩個企業(yè)的實習,每個企業(yè)兩人,共有種,甲乙在同一個公司有兩種可能,故概率為,故答案為.【點睛】本題考查古典概型及其概率計算公式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求得的導函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達定理求得的關系式,利用差比較法,計算,通過構造函數(shù),利用導數(shù)證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調(diào)遞減;當時,由解得或,∵是增函數(shù),∴此時在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設,∴,,令,∴,∴在上是減函數(shù),,∴,即.【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.18、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.19、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價于對任意恒成立,構造,求出的單調(diào)性,由,,,,可得存在唯一的零點,使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當時,,時,.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因為對任意恒成立,又,∴.點睛:利用導數(shù)研究不等式恒成立或存在型問題,首先要構造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學思想的運用.21、(1).(2)見解析【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土方機械裝配調(diào)試工標準化知識考核試卷含答案
- 防水卷材制造工誠信品質(zhì)測試考核試卷含答案
- 海水淡化工操作評估競賽考核試卷含答案
- 甲殼類繁育工誠信品質(zhì)競賽考核試卷含答案
- 糧油保管員班組管理考核試卷含答案
- 液化氣體生產(chǎn)工成果評優(yōu)考核試卷含答案
- 油氣管道維護工安全理論競賽考核試卷含答案
- 攪拌工班組管理強化考核試卷含答案
- 皮革及皮革制品加工工安全管理水平考核試卷含答案
- 井下充填制備工安全培訓效果競賽考核試卷含答案
- 內(nèi)分泌科糖尿病足管理指南
- 2026年江西楓林涉外經(jīng)貿(mào)職業(yè)學院單招綜合素質(zhì)考試題庫及答案詳解一套
- 西藏吊橋施工方案(3篇)
- 2025中智信通第三批社會招聘(公共基礎知識)綜合能力測試題附答案解析
- 全國人大機關直屬事業(yè)單位2026年度公開招聘工作人員備考題庫附答案解析
- GB/T 46469-2025皮革物理和機械試驗抗張強度和伸長率的測定
- 快遞員外包合同范本
- 工程居間費合同范本
- 2025年10月自考02324離散數(shù)學試題及答案
- 2025中國未來交通產(chǎn)業(yè)發(fā)展全景圖及趨勢研究報告
- 合伙飯店協(xié)議書模板
評論
0/150
提交評論