大連市重點中學2024年高考數(shù)學考前最后一卷預測卷含解析_第1頁
大連市重點中學2024年高考數(shù)學考前最后一卷預測卷含解析_第2頁
大連市重點中學2024年高考數(shù)學考前最后一卷預測卷含解析_第3頁
大連市重點中學2024年高考數(shù)學考前最后一卷預測卷含解析_第4頁
大連市重點中學2024年高考數(shù)學考前最后一卷預測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

大連市重點中學2024年高考數(shù)學考前最后一卷預測卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點的直線與曲線交于兩點,若,則直線的斜率為()A. B.C.或 D.或2.將函數(shù)圖象向右平移個單位長度后,得到函數(shù)的圖象關于直線對稱,則函數(shù)在上的值域是()A. B. C. D.3.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或54.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.5.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.6.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.77.已知函數(shù),若關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.8.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.129.設命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.10.已知,滿足約束條件,則的最大值為A. B. C. D.11.若復數(shù)z滿足,則復數(shù)z在復平面內(nèi)對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知向量,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.14.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;15.在的展開式中的系數(shù)為,則_______.16.一次考試后,某班全班50個人數(shù)學成績的平均分為正數(shù),若把當成一個同學的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側(cè)面為正方形,求直線與平面所成角的正弦值.18.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.19.(12分)已知函數(shù)f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)設g(x)=f(x)1,若函數(shù)g(x)在上有兩個零點,求實數(shù)a的取值范圍.20.(12分)已知橢圓:()的離心率為,且橢圓的一個焦點與拋物線的焦點重合.過點的直線交橢圓于,兩點,為坐標原點.(1)若直線過橢圓的上頂點,求的面積;(2)若,分別為橢圓的左、右頂點,直線,,的斜率分別為,,,求的值.21.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.22.(10分)已知函數(shù)(),是的導數(shù).(1)當時,令,為的導數(shù).證明:在區(qū)間存在唯一的極小值點;(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設與曲線相切于點,則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【點睛】本小題主要考查直線和圓的位置關系,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于中檔題.2、D【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.3、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.4、D【解析】

作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側(cè),與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.5、C【解析】

設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.6、B【解析】

根據(jù)拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應用,基本不等式的用法,屬于中檔題.7、B【解析】

利用換元法設,則等價為有且只有一個實數(shù)根,分三種情況進行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數(shù)根.當時,當時,,由即,解得,結(jié)合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數(shù)有無數(shù)個零點,不符合題意;當時,當時,,此時最小值為,結(jié)合圖象可知,要使得關于的方程有且只有一個實數(shù)根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應用.利用換元法,數(shù)形結(jié)合是解決本題的關鍵.8、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B9、C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當時,,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.10、D【解析】

作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.11、A【解析】

化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內(nèi)對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結(jié)合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.12、A【解析】

利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯(lián)立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.14、②③【解析】

根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力,利用對稱性是解題的關鍵.15、2【解析】

首先求出的展開項中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當時有,解得.故答案為:.【點睛】本題主要考查了二項式展開項的系數(shù),屬于簡單題.16、1【解析】

根據(jù)均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.【點睛】本題主要考查了線面垂直的判定與性質(zhì),考查空間向量與空間角的計算,屬于中檔題.18、(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.19、(1)單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞)(2)(3,2e]【解析】

(1)當a=2時,求出,求解,即可得出結(jié)論;(2)函數(shù)在上有兩個零點等價于a=2x在上有兩解,構造函數(shù),,利用導數(shù),可分析求得實數(shù)a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調(diào)遞減;當時,單調(diào)遞增;故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)設,函數(shù)g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區(qū)間上單調(diào)遞增,又,所以當時,有,即,當時,有,即,所以在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數(shù)a的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉(zhuǎn)化思想以及數(shù)形結(jié)合思想,考查邏輯推理、數(shù)學計算能力,屬于中檔題.20、(1)(2)【解析】

(1)根據(jù)拋物線的焦點求得橢圓的焦點,由此求得,結(jié)合橢圓離心率求得,進而求得,從而求得橢圓的標準方程,求得橢圓上頂點的坐標,由此求得直線的方程.聯(lián)立直線的方程和橢圓方程,求得兩點的縱坐標,由此求得的面積.(2)求得兩點的坐標,設出直線的方程,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,由此求得的值,根據(jù)在橢圓上求得的值,由此求得的值.【詳解】(1)因為拋物線的焦點坐標為,所以橢圓的右焦點的坐標為,所以,因為橢圓的離心率為,所以,解得,所以,故橢圓的標準方程為.其上頂點為,所以直線:,聯(lián)立,消去整理得,解得,,所以的面積.(2)由題知,,,設,.由題還可知,直線的斜率不為0,故可設:.由,消去,得,所以所以,又因為點在橢圓上,所以,所以.【點睛】本小題主要考查拋物線的焦點,橢圓的標準方程和幾何性質(zhì)、直線與橢圓,三角形的面積等基礎知識,考查推理論證能力、運算求解能力,化歸與轉(zhuǎn)化思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論