四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第1頁(yè)
四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第2頁(yè)
四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第3頁(yè)
四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第4頁(yè)
四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省宣漢縣重點(diǎn)名校2024年中考數(shù)學(xué)全真模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.五個(gè)新籃球的質(zhì)量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數(shù)表示超過(guò)標(biāo)準(zhǔn)質(zhì)量的克數(shù),負(fù)數(shù)表示不足標(biāo)準(zhǔn)質(zhì)量的克數(shù).僅從輕重的角度看,最接近標(biāo)準(zhǔn)的籃球的質(zhì)量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+52.一組數(shù)據(jù)是4,x,5,10,11共五個(gè)數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.113.下列方程中有實(shí)數(shù)解的是()A.x4+16=0 B.x2﹣x+1=0C. D.4.如圖,函數(shù)y1=x3與y2=在同一坐標(biāo)系中的圖象如圖所示,則當(dāng)y1<y2時(shí)()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>15.中國(guó)傳統(tǒng)扇文化有著深厚的底蘊(yùn),下列扇面圖形是中心對(duì)稱圖形的是()A. B. C. D.6.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.7.下列計(jì)算正確的是()A.x+x=x2B.x·x=2xC.(8.某商品價(jià)格為元,降價(jià)10%后,又降價(jià)10%,因銷售量猛增,商店決定再提價(jià)20%,提價(jià)后這種商品的價(jià)格為()A.0.96元 B.0.972元 C.1.08元 D.元9.如圖,已知兩個(gè)全等的直角三角形紙片的直角邊分別為、,將這兩個(gè)三角形的一組等邊重合,拼合成一個(gè)無(wú)重疊的幾何圖形,其中軸對(duì)稱圖形有()A.3個(gè); B.4個(gè); C.5個(gè); D.6個(gè).10.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度.祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后第七位,這一結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算半徑為1的圓內(nèi)接正六邊形的面積S6,則S6的值為()A. B.2 C. D.11.下列運(yùn)算正確的是()A.a(chǎn)?a2=a2 B.(ab)2=ab C.3﹣1= D.12.在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點(diǎn)橫坐標(biāo)差的最大值,“鉛垂高”h:任意兩點(diǎn)縱坐標(biāo)差的最大值,則“矩面積”S=ah.例如:三點(diǎn)坐標(biāo)分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點(diǎn)的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個(gè)交點(diǎn)為(2,m),則=____.14.如圖,在直角坐標(biāo)平面xOy中,點(diǎn)A坐標(biāo)為,,,AB與x軸交于點(diǎn)C,那么AC:BC的值為_(kāi)_____.15.使得關(guān)于x的分式方程的解為負(fù)整數(shù),且使得關(guān)于x的不等式組有且僅有5個(gè)整數(shù)解的所有k的和為_(kāi)____.16.點(diǎn)A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當(dāng)1<x1<1,3<x1<4時(shí),則y1與y1的大小關(guān)系是y1_____y1.(用“>”、“<”、“=”填空)17.如果,那么______.18.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.20.(6分)已知:如圖,一次函數(shù)與反比例函數(shù)的圖象有兩個(gè)交點(diǎn)和,過(guò)點(diǎn)作軸,垂足為點(diǎn);過(guò)點(diǎn)作軸,垂足為點(diǎn),且,連接.求,,的值;求四邊形的面積.21.(6分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時(shí),求拋物線的解析式和頂點(diǎn)坐標(biāo);(2)P(m,t)為拋物線上的一個(gè)動(dòng)點(diǎn).①當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′落在直線BC上時(shí),求m的值;②當(dāng)點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′落在第一象限內(nèi),P′A2取得最小值時(shí),求m的值及這個(gè)最小值.22.(8分)如圖,在等腰△ABC中,AB=BC,以AB為直徑的⊙O與AC相交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BC交AB延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.(1)證明:DE是⊙O的切線;(2)若BE=4,∠E=30°,求由、線段BE和線段DE所圍成圖形(陰影部分)的面積,(3)若⊙O的半徑r=5,sinA=,求線段EF的長(zhǎng).23.(8分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點(diǎn),中柱CD=1米,∠A=27°,求跨度AB的長(zhǎng)(精確到0.01米).24.(10分)今年5月份,某校九年級(jí)學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(jí)(1)班同學(xué)的中考體育情況,對(duì)全班學(xué)生的中考體育成績(jī)進(jìn)行了統(tǒng)計(jì),并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計(jì)圖(圖11-2),根據(jù)圖表中的信息解答下列問(wèn)題:分組

分?jǐn)?shù)段(分)

頻數(shù)

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學(xué)生人數(shù)和m的值;(2)直接學(xué)出該班學(xué)生的中考體育成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段;(3)該班中考體育成績(jī)滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機(jī)選取2人到八年級(jí)進(jìn)行經(jīng)驗(yàn)交流,請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出恰好選到一男一女的概率.25.(10分)(1)計(jì)算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡(jiǎn),再求值:÷(2+),其中a=.26.(12分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.27.(12分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過(guò)點(diǎn)A作⊙O的切線與OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

求它們的絕對(duì)值,比較大小,絕對(duì)值小的最接近標(biāo)準(zhǔn)的籃球的質(zhì)量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標(biāo)準(zhǔn)的籃球的質(zhì)量是-0.6,故選B.【點(diǎn)睛】本題考查了正數(shù)和負(fù)數(shù),掌握正數(shù)和負(fù)數(shù)的定義以及意義是解題的關(guān)鍵.2、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點(diǎn):3.眾數(shù);3.算術(shù)平均數(shù).3、C【解析】

A、B是一元二次方程可以根據(jù)其判別式判斷其根的情況;C是無(wú)理方程,容易看出沒(méi)有實(shí)數(shù)根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無(wú)實(shí)數(shù)根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無(wú)實(shí)數(shù)根;C.x=﹣1是方程的根;D.當(dāng)x=1時(shí),分母x2-1=0,無(wú)實(shí)數(shù)根.故選:C.【點(diǎn)睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數(shù)的值叫做方程的解.解答本題的關(guān)鍵是針對(duì)不同的方程進(jìn)行分類討論.4、B【解析】

根據(jù)圖象知,兩個(gè)函數(shù)的圖象的交點(diǎn)是(1,1),(-1,-1).由圖象可以直接寫出當(dāng)y1<y2時(shí)所對(duì)應(yīng)的x的取值范圍.【詳解】根據(jù)圖象知,一次函數(shù)y1=x3與反比例函數(shù)y2=的交點(diǎn)是(1,1),(-1,?1),∴當(dāng)y1<y2時(shí),,0<x<1或x<-1;故答案選:B.【點(diǎn)睛】本題考查了反比例函數(shù)與冪函數(shù),解題的關(guān)鍵是熟練的掌握反比例函數(shù)與冪函數(shù)的圖象根據(jù)圖象找出答案.5、C【解析】

根據(jù)中心對(duì)稱圖形的概念進(jìn)行分析.【詳解】A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

B、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

C、是中心對(duì)稱圖形,故此選項(xiàng)正確;

D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

故選:C.【點(diǎn)睛】考查了中心對(duì)稱圖形的概念.中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),得出方程ax2+(b-1)x+c=0有兩個(gè)不相等的根,進(jìn)而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個(gè)交點(diǎn),根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對(duì)稱軸x=->0,即可進(jìn)行判斷.【詳解】點(diǎn)P在拋物線上,設(shè)點(diǎn)P(x,ax2+bx+c),又因點(diǎn)P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點(diǎn),∴方程ax2+(b-1)x+c=0有兩個(gè)正實(shí)數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個(gè)交點(diǎn),又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對(duì)稱軸x=->0,∴A符合條件,故選A.7、D【解析】分析:根據(jù)合并同類項(xiàng)、同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法的運(yùn)算法則計(jì)算即可.解答:解:A、x+x=2x,選項(xiàng)錯(cuò)誤;B、x?x=x2,選項(xiàng)錯(cuò)誤;C、(x2)3=x6,選項(xiàng)錯(cuò)誤;D、正確.故選D.8、B【解析】

提價(jià)后這種商品的價(jià)格=原價(jià)×(1-降低的百分比)(1-百分比)×(1+增長(zhǎng)的百分比),把相關(guān)數(shù)值代入求值即可.【詳解】第一次降價(jià)后的價(jià)格為a×(1-10%)=0.9a元,第二次降價(jià)后的價(jià)格為0.9a×(1-10%)=0.81a元,∴提價(jià)20%的價(jià)格為0.81a×(1+20%)=0.972a元,故選B.【點(diǎn)睛】本題考查函數(shù)模型的選擇與應(yīng)用,考查列代數(shù)式,得到第二次降價(jià)后的價(jià)格是解決本題的突破點(diǎn);得到提價(jià)后這種商品的價(jià)格的等量關(guān)系是解決本題的關(guān)鍵.9、B【解析】分析:直接利用軸對(duì)稱圖形的性質(zhì)進(jìn)而分析得出答案.詳解:如圖所示:將這兩個(gè)三角形的一組等邊重合,拼合成一個(gè)無(wú)重疊的幾何圖形,其中軸對(duì)稱圖形有4個(gè).故選B.點(diǎn)睛:本題主要考查了全等三角形的性質(zhì)和軸對(duì)稱圖形,正確把握軸對(duì)稱圖形的性質(zhì)是解題的關(guān)鍵.10、C【解析】

根據(jù)題意畫(huà)出圖形,結(jié)合圖形求出單位圓的內(nèi)接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內(nèi)接正六邊形ABCDEF中,△AOB是邊長(zhǎng)為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點(diǎn)睛】本題考查了已知圓的半徑求其內(nèi)接正六邊形面積的應(yīng)用問(wèn)題,關(guān)鍵是根據(jù)正三角形的面積,正n邊形的性質(zhì)解答.11、C【解析】

根據(jù)同底數(shù)冪的乘法法則對(duì)A進(jìn)行判斷;根據(jù)積的乘方對(duì)B進(jìn)行判斷;根據(jù)負(fù)整數(shù)指數(shù)冪的意義對(duì)C進(jìn)行判斷;根據(jù)二次根式的加減法對(duì)D進(jìn)行判斷.【詳解】解:A、原式=a3,所以A選項(xiàng)錯(cuò)誤;B、原式=a2b2,所以B選項(xiàng)錯(cuò)誤;C、原式=,所以C選項(xiàng)正確;D、原式=2,所以D選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了二次根式的加減法:二次根式相加減,先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把被開(kāi)方數(shù)相同的二次根式進(jìn)行合并,合并方法為系數(shù)相加減,根式不變.也考查了整式的運(yùn)算.12、C【解析】

由題可知“水平底”a的長(zhǎng)度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進(jìn)行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當(dāng)t>2時(shí),t-1=6,解得t=7;當(dāng)t<1時(shí),2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系的內(nèi)容,理解題意是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、4【解析】

利用交點(diǎn)(2,m)同時(shí)滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(diǎn)(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點(diǎn)睛】本題主要考查了函數(shù)的交點(diǎn)問(wèn)題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.14、【解析】

過(guò)點(diǎn)A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.先證△ADO∽△OEB,再根據(jù)∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根據(jù)平行線分線段成比例得到AC:BC=OD:OE=2∶=【詳解】解:如圖所示:過(guò)點(diǎn)A作AD⊥y軸,垂足為D,作BE⊥y軸,垂足為E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵點(diǎn)A坐標(biāo)為(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根據(jù)平行線分線段成比例得:AC:BC=OD:OE=2∶=故答案為.【點(diǎn)睛】本題考查三角形相似的證明以及平行線分線段成比例.15、12.1【解析】

依據(jù)分式方程=1的解為負(fù)整數(shù),即可得到k>,k≠1,再根據(jù)不等式組有1個(gè)整數(shù)解,即可得到0≤k<4,進(jìn)而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,

∵分式方程=1的解為負(fù)整數(shù),

∴1-2k<0,

∴k>,

又∵x≠-1,

∴1-2k≠-1,

∴k≠1,

解不等式組,可得,

∵不等式組有1個(gè)整數(shù)解,

∴1≤<2,

解得0≤k<4,

∴<k<4且k≠1,

∴k的值為1.1或2或2.1或3或3.1,

∴符合題意的所有k的和為12.1,

故答案為12.1.【點(diǎn)睛】本題考查了解一元一次不等式組、分式方程的解,解題時(shí)注意分式方程中的解要滿足分母不為0的情況.16、<【解析】

先根據(jù)二次函數(shù)的解析式判斷出拋物線的開(kāi)口方向及對(duì)稱軸,根據(jù)圖象上的點(diǎn)的橫坐標(biāo)距離對(duì)稱軸的遠(yuǎn)近來(lái)判斷縱坐標(biāo)的大小.【詳解】由二次函數(shù)y=x1-4x-1=(x-1)1-5可知,其圖象開(kāi)口向上,且對(duì)稱軸為x=1,

∵1<x1<1,3<x1<4,

∴A點(diǎn)橫坐標(biāo)離對(duì)稱軸的距離小于B點(diǎn)橫坐標(biāo)離對(duì)稱軸的距離,

∴y1<y1.

故答案為<.17、;【解析】

先對(duì)等式進(jìn)行轉(zhuǎn)換,再求解.【詳解】∵∴3x=5x-5y∴2x=5y∴【點(diǎn)睛】本題考查的是分式,熟練掌握分式是解題的關(guān)鍵.18、【解析】連接OA,作OM⊥AB于點(diǎn)M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2);(3)【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;

(2)過(guò)O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;

(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時(shí),得到d+f=12,當(dāng)M與B重合時(shí),得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,

∵OA=OC,

∴∠A=∠OCA,

∵AC∥OP,

∴∠A=∠BOP,∠ACO=∠COP,

∴∠COP=∠BOP,

∵PB是⊙O的切線,AB是⊙O的直徑,

∴∠OBP=90°,

在△POC與△POB中,,

∴△COP≌△BOP,

∴∠OCP=∠OBP=90°,

∴PC是⊙O的切線;

(2)過(guò)O作OD⊥AC于D,

∴∠ODC=∠OCP=90°,CD=AC,

∵∠DCO=∠COP,

∴△ODC∽△PCO,

∴,

∴CD?OP=OC2,

∵OP=AC,

∴AC=OP,

∴CD=OP,

∴OP?OP=OC2

∴,

∴sin∠CPO=;

(3)連接BC,

∵AB是⊙O的直徑,

∴AC⊥BC,

∵AC=9,AB=1,

∴BC==12,

當(dāng)CM⊥AB時(shí),

d=AM,f=BM,

∴d+f=AM+BM=1,

當(dāng)M與B重合時(shí),

d=9,f=0,

∴d+f=9,

∴d+f的取值范圍是:9≤d+f≤1.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.20、(1),,.(2)6【解析】

(1)用代入法可求解,用待定系數(shù)法求解;(2)延長(zhǎng),交于點(diǎn),則.根據(jù)求解.【詳解】解:(1)∵點(diǎn)在上,∴,∵點(diǎn)在上,且,∴.∵過(guò),兩點(diǎn),∴,解得,∴,,.(2)如圖,延長(zhǎng),交于點(diǎn),則.∵軸,軸,∴,,∴,,∴.∴四邊形的面積為6.【點(diǎn)睛】考核知識(shí)點(diǎn):反比例函數(shù)和一次函數(shù)的綜合運(yùn)用.數(shù)形結(jié)合分析問(wèn)題是關(guān)鍵.21、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點(diǎn)坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時(shí),m的值是,這個(gè)最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點(diǎn)P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點(diǎn)B的坐標(biāo),進(jìn)而求得直線BC的解析式,再根據(jù)點(diǎn)P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時(shí),m的值及這個(gè)最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點(diǎn)P和P′關(guān)于原點(diǎn)對(duì)稱,∴P′(﹣m,﹣t),當(dāng)y=3時(shí),3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點(diǎn)B(1,3).∵點(diǎn)B(1,3),點(diǎn)C(3,﹣1),設(shè)直線BC對(duì)應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點(diǎn)P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點(diǎn)P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點(diǎn)P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過(guò)點(diǎn)P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當(dāng)t=﹣時(shí),P′A3有最小值,此時(shí)P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時(shí),m的值是,這個(gè)最小值是.【點(diǎn)睛】本題是二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用二次函數(shù)的性質(zhì)解答.22、(1)見(jiàn)解析(2)8(3)【解析】分析:(1)連接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根據(jù)AO=OB知OD是△ABC的中位線,據(jù)此知OD∥BC,結(jié)合DE⊥BC即可得證;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根據(jù)S陰影=S△ODE-S扇形ODB計(jì)算可得答案.(3)先證Rt△DFB∽R(shí)t△DCB得,據(jù)此求得BF的長(zhǎng),再證△EFB∽△EDO得,據(jù)此求得EB的長(zhǎng),繼而由勾股定理可得答案.詳解:(1)如圖,連接BD、OD,∵AB是⊙O的直徑,∴∠BDA=90°,∵BA=BC,∴AD=CD,又∵AO=OB,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE是⊙O的切線;(2)設(shè)⊙O的半徑為x,則OB=OD=x,在Rt△ODE中,OE=4+x,∠E=30°,∴,解得:x=4,∴DE=4,S△ODE=×4×4=8,S扇形ODB=,則S陰影=S△ODE-S扇形ODB=8-;(3)在Rt△ABD中,BD=ABsinA=10×=2,∵DE⊥BC,∴Rt△DFB∽R(shí)t△DCB,∴,即,∴BF=2,∵OD∥BC,∴△EFB∽△EDO,∴,即,∴EB=,∴EF=.點(diǎn)睛:本題主要考查圓的綜合問(wèn)題,解題的關(guān)鍵是掌握?qǐng)A的有關(guān)性質(zhì)、中位線定理、三角函數(shù)的應(yīng)用及相似三角形的判定與性質(zhì)等知識(shí)點(diǎn).23、AB≈3.93m.【解析】

想求得AB長(zhǎng),由等腰三角形的三線合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函數(shù)可以求出.【詳解】∵AC=BC,D是AB的中點(diǎn),∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【點(diǎn)睛】本題考查了三角函數(shù),直角三角形,等腰三角形等知識(shí),關(guān)鍵利用了正切函數(shù)的定義求出AD,然后就可以求出AB.24、(1)50,18;(2)中位數(shù)落在51﹣56分?jǐn)?shù)段;(3).【解析】

(1)利用C分?jǐn)?shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進(jìn)而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫(huà)樹(shù)狀圖列舉出所有的可能,再根據(jù)概率公式計(jì)算即可得解.【詳解】解:(1)由題意可得:全班學(xué)生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)∵全班學(xué)生人數(shù):50人,∴第25和第26個(gè)數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分?jǐn)?shù)段;(3)如圖所示:將男生分別標(biāo)記為A1,A2,女生標(biāo)記為B1

A1

A2

B1

A1

(A1,A2)

(A1,B1)

A2

(A2,A1)

(A2,B1)

B1

(B1,A1)

(B1,A2)

P(一男一女).【點(diǎn)睛】本題考查列表法與樹(shù)狀圖法,頻數(shù)(率)分布表,扇形統(tǒng)計(jì)圖,中位數(shù).25、(1)5+;(2)【解析】試題分析:(1)先分別進(jìn)行絕對(duì)值化簡(jiǎn),0指數(shù)冪、負(fù)指數(shù)冪的計(jì)算,特殊三角函數(shù)值、二次根式的化簡(jiǎn),然后再按運(yùn)算順序進(jìn)行計(jì)算即可;(2)括號(hào)內(nèi)先通分進(jìn)行加法運(yùn)算,然后再進(jìn)行分式除法運(yùn)算,最后代入數(shù)值進(jìn)行計(jì)算即可.試題解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)原式==,當(dāng)a=時(shí),原式==.26、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時(shí),點(diǎn)P的坐標(biāo)為(2,);(3)存在,具體見(jiàn)解析.【解析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時(shí)有最小值,求出點(diǎn)D的坐標(biāo)即可;(3)存在,分別根據(jù)①AC為對(duì)角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過(guò)O、A兩點(diǎn),且頂點(diǎn)在BC邊上,∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論