2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第1頁
2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第2頁
2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第3頁
2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第4頁
2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年山東省濟(jì)南三中高一數(shù)學(xué)第二學(xué)期期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,設(shè)角,,的對(duì)邊分別是,,,若,,,則其面積等于()A. B. C. D.2.在學(xué)習(xí)等差數(shù)列時(shí),我們由,,,,得到等差數(shù)列的通項(xiàng)公式是,象這樣由特殊到一般的推理方法叫做()A.不完全歸納法 B.?dāng)?shù)學(xué)歸納法 C.綜合法 D.分析法3.邊長(zhǎng)為的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于,則直線與平面所成角的正弦值為()A. B. C. D.4.已知函數(shù)向左平移個(gè)單位長(zhǎng)度后,其圖象關(guān)于軸對(duì)稱,則的最小值為()A. B. C. D.5.在中,角,,所對(duì)的邊分別為,,,若,,則等于()A.1 B.2 C. D.46.在中,若,則的面積為().A.8 B.2 C. D.47.如圖,平行四邊形的對(duì)角線相交于點(diǎn),是的中點(diǎn),的延長(zhǎng)線與相交于點(diǎn),若,,,則()A. B. C. D.8.長(zhǎng)方體,,,,則異面直線與所成角的余弦值為A. B. C. D.9.某數(shù)學(xué)競(jìng)賽小組有3名男同學(xué)和2名女同學(xué),現(xiàn)從這5名同學(xué)中隨機(jī)選出2人參加數(shù)學(xué)競(jìng)賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學(xué)和1名女同學(xué)的概率為()A. B. C. D.10.在中,角的對(duì)邊分別是,若,且三邊成等比數(shù)列,則的值為()A. B. C.1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是________.12.向邊長(zhǎng)為的正方形內(nèi)隨機(jī)投粒豆子,其中粒豆子落在到正方形的頂點(diǎn)的距離不大于的區(qū)域內(nèi)(圖中陰影區(qū)域),由此可估計(jì)的近似值為______.(保留四位有效數(shù)字)13.的內(nèi)角的對(duì)邊分別為,若,,,則的面積為__________.14.已知數(shù)列,其中,若數(shù)列中,恒成立,則實(shí)數(shù)的取值范圍是_______.15.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對(duì)岸,已知船的靜水速度,水流速度,則行駛航程最短時(shí),所用時(shí)間是__________(精確到).16.某工廠甲、乙、丙三個(gè)車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過兩點(diǎn),且圓心在軸上.(1)求圓的方程;(2)若直線,且截軸所得縱截距為5,求直線截圓所得線段的長(zhǎng)度.18.已知,且,向量,.(1)求函數(shù)的解析式,并求當(dāng)時(shí),的單調(diào)遞增區(qū)間;(2)當(dāng)時(shí),的最大值為5,求的值;(3)當(dāng)時(shí),若不等式在上恒成立,求實(shí)數(shù)的取值范圍.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù)在上的最大值和最小值.20.等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,滿足,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.21.已知三棱錐中,是邊長(zhǎng)為的正三角形,;(1)證明:平面平面;(2)設(shè)為棱的中點(diǎn),求二面角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

直接利用三角形的面積的公式求出結(jié)果.【詳解】解:中,角,,的對(duì)邊邊長(zhǎng)分別為,,,若,,,則,故選:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角形面積公式的應(yīng)用及相關(guān)的運(yùn)算問題,屬于基礎(chǔ)題.2、A【解析】

根據(jù)題干中的推理由特殊到一般的推理屬于歸納推理,但又不是數(shù)學(xué)歸納法,從而可得出結(jié)果.【詳解】本題由前三項(xiàng)的規(guī)律猜想出一般項(xiàng)的特點(diǎn)屬于歸納法,但本題并不是數(shù)學(xué)歸納法,因此,本題中的推理方法是不完全歸納法,故選:A.【點(diǎn)睛】本題考查歸納法的特點(diǎn),判斷時(shí)要區(qū)別數(shù)學(xué)歸納法與不完全歸納法,考查對(duì)概念的理解,屬于基礎(chǔ)題.3、D【解析】

在正方形中連接,交于點(diǎn),根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點(diǎn),在折疊圖,連接,因?yàn)?,所以平面,所以,又因?yàn)?,所以平面,又因?yàn)槠矫妫云矫?,則是在平面上的射影,所以即為所求.因?yàn)楣蔬x:D【點(diǎn)睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.4、A【解析】

根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對(duì)稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個(gè)單位長(zhǎng)度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對(duì)稱,即為偶函數(shù).所以即,當(dāng)時(shí),的值最小.所以的最小值為:故選:A【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.5、D【解析】

直接利用正弦定理得到,帶入化簡(jiǎn)得到答案.【詳解】正弦定理:即:故選D【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.6、C【解析】

由正弦定理結(jié)合已知,可以得到的關(guān)系,再根據(jù)余弦定理結(jié)合,可以求出的值,再利用三角形面積公式求出三角形的面積即可.【詳解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面積為,故本題選C.【點(diǎn)睛】本題考查了正弦定理、余弦定理、三角形面積公式,考查了數(shù)學(xué)運(yùn)算能力.7、B【解析】

先根據(jù)勾股定理判斷為直角三角形,且,,再根據(jù)三角形相似可得,然后由向量的加減的幾何意義以及向量的數(shù)量積公式計(jì)算即可.【詳解】,,,,為直角三角形,且,,平行行四邊形的對(duì)角線相交于點(diǎn),是的中點(diǎn),,,,,故選B.【點(diǎn)睛】本題主要考查向量的加減的幾何意義以及向量的數(shù)量積公式的應(yīng)用.8、A【解析】

由題,找出,故(或其補(bǔ)角)為異面直線與所成角,然后解出答案即可.【詳解】如圖,連接,由,(或其補(bǔ)角)為異面直線與所成角,由已知可得,則..即異面直線與所成角的余弦值為.故選A.【點(diǎn)睛】本題考查了異面直線的夾角問題,找平行線,找出夾角是解題的關(guān)鍵,屬于較為基礎(chǔ)題.9、A【解析】

把5名學(xué)生編號(hào),然后寫出任取2人的所有可能,按要求計(jì)數(shù)后可得概率.【詳解】3名男生編號(hào)為,兩名女生編號(hào)為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點(diǎn)睛】本題考查古典概型,方法是列舉法.10、C【解析】

先利用正弦定理邊角互化思想得出,再利余弦定理以及條件得出可得出是等邊三角形,于此可得出的值.【詳解】,由正弦定理邊角互化的思想得,,,,則.、、成等比數(shù)列,則,由余弦定理得,化簡(jiǎn)得,,則是等邊三角形,,故選C.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查余弦定理的應(yīng)用,解題時(shí)應(yīng)根據(jù)等式結(jié)構(gòu)以及已知元素類型合理選擇正弦定理與余弦定理求解,考查計(jì)算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

求出函數(shù)在上的值域,根據(jù)原函數(shù)與反函數(shù)的關(guān)系即可求解.【詳解】因?yàn)楹瘮?shù),當(dāng)時(shí)是單調(diào)減函數(shù)當(dāng)時(shí),;當(dāng)時(shí),所以在上的值域?yàn)楦鶕?jù)反函數(shù)的定義域就是原函數(shù)的值域可得函數(shù)的值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題求一個(gè)反三角函數(shù)的值域,著重考查了余弦函數(shù)的圖像與性質(zhì)和反函數(shù)的性質(zhì)等知識(shí),屬于基礎(chǔ)題.12、3.1【解析】

根據(jù)已知條件求出滿足條件的正方形的面積,及到頂點(diǎn)的距離不大于1的區(qū)域(圖中陰影區(qū)域)的面積比值等于頻率即可求出答案.【詳解】依題意得,正方形的面積,陰影部分的面積,故落在到正方形的頂點(diǎn)的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的概率,隨機(jī)投10000粒豆子,其中1968粒豆子落在到正方形的頂點(diǎn)的距離不大于1的區(qū)域內(nèi)(圖中陰影區(qū)域)的頻率為:,即有:,解得:,故答案為3.1.【點(diǎn)睛】幾何概型的概率估算公式中的“幾何度量”,可以為線段長(zhǎng)度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件的基本事件對(duì)應(yīng)的“幾何度量”(A),再求出總的基本事件對(duì)應(yīng)的“幾何度量”,最后根據(jù)求解.利用頻率約等于概率,即可求解。13、【解析】

由已知及正弦定理可得:,進(jìn)而利用余弦定理即可求得a的值,進(jìn)而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點(diǎn)睛】本題注意考查余弦定理與正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.14、【解析】

由函數(shù)(數(shù)列)單調(diào)性確定的項(xiàng),哪些項(xiàng)取,哪些項(xiàng)取,再由是最小項(xiàng),得不等關(guān)系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時(shí),,當(dāng)時(shí),,∵數(shù)列中,是唯一的最小項(xiàng),∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點(diǎn)睛】本題考查數(shù)列的單調(diào)性與最值.解題時(shí)楞借助函數(shù)的單調(diào)性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時(shí)與連續(xù)函數(shù)有一些區(qū)別.15、6【解析】

先確定船的方向,再求出船的速度和時(shí)間.【詳解】因?yàn)樾谐套疃?,所以船?yīng)該朝上游的方向行駛,所以船的速度為km/h,所以所用時(shí)間是.故答案為6【點(diǎn)睛】本題主要考查平面向量的應(yīng)用,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.16、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個(gè)車間依次抽取a,b,c個(gè)樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)設(shè)圓心的坐標(biāo)為,利用求出的值,可確定圓心坐標(biāo),并計(jì)算出半徑長(zhǎng),然后利用標(biāo)準(zhǔn)方程可寫出圓的方程;(2)由,得出直線的斜率與直線的斜率相等,可得出直線的斜率,再由截軸所得縱截距為,可得出直線的方程,計(jì)算圓心到直線的距離,則.【詳解】(1)設(shè)圓心,則,則所以圓方程:.(2)由于,且,則,則圓心到直線的距離為:.由于,【點(diǎn)睛】本題考查圓的方程的求解以及直線截圓所得弦長(zhǎng)的計(jì)算,再解直線與圓相關(guān)的問題時(shí),可充分利用圓的幾何性質(zhì),利用幾何法來處理,問題的核心在于計(jì)算圓心到直線的距離的計(jì)算,在計(jì)算弦長(zhǎng)時(shí),也可以利用弦長(zhǎng)公式來計(jì)算。18、(1),單調(diào)增區(qū)間為;(2)或;(3).【解析】試題分析:(Ⅰ)化簡(jiǎn),解不等式求得的范圍即得增區(qū)間(2)討論a的正負(fù),確定最大值,求a;(3)化簡(jiǎn)絕對(duì)值不等式,轉(zhuǎn)化在上恒成立,即,求出在上的最大值,最小值即得解.試題解析:(1)∵∴∴單調(diào)增區(qū)間為(2)當(dāng)時(shí),若,,∴若,,∴∴綜上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范圍.點(diǎn)睛:本題考查了平面向量的數(shù)量積的應(yīng)用,三角函數(shù)的單調(diào)性與最值,三角函數(shù)的化簡(jiǎn),恒成立問題的處理及分類討論的數(shù)學(xué)思想,綜合性強(qiáng).19、(1);(2)5;-2【解析】

(1)根據(jù)二倍角公式和輔助角公式化簡(jiǎn)即可(2)由求出的范圍,再根據(jù)函數(shù)圖像求最值即可【詳解】(1),,令,即單減區(qū)間為;(2)由,當(dāng)時(shí),的最小值為:-2;當(dāng)時(shí),的最大值為:5【點(diǎn)睛】本題考查三角函數(shù)解析式的化簡(jiǎn),函數(shù)基本性質(zhì)的求解(周期、單調(diào)性、在給定區(qū)間的最值),屬于中檔題20、(1),;(2)【解析】

(1)由是等差數(shù)列,,,可求出,由是等比數(shù)列,,,,可求出;(2)將和的通項(xiàng)公式代入,則,利用裂項(xiàng)相消求和法可求出.【詳解】(1),,,解得.又,,.(2)由(1),得【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求法,考查了用裂項(xiàng)相消求數(shù)列的前項(xiàng)和,屬于中檔題.21、(1)見解析(2)【解析】

(1)由題意結(jié)合正弦定理可得,據(jù)此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論