廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省茂名市電白區(qū)2024年高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列的通項,其前項之和為,則在平面直角坐標(biāo)系中,直線在軸上的截距為()A.-10 B.-9 C.10 D.92.等比數(shù)列的各項均為正數(shù),且,則()A.3 B.6 C.9 D.813.設(shè)向量,滿足,,則()A.1 B.2 C.3 D.54.如圖,在中,,,若,則()A. B. C. D.5.設(shè)函數(shù),則()A.在單調(diào)遞增,且其圖象關(guān)于直線對稱B.在單調(diào)遞增,且其圖象關(guān)于直線對稱C.在單調(diào)遞減,且其圖象關(guān)于直線對稱D.在單調(diào)遞增,且其圖象關(guān)于直線對稱6.設(shè)為銳角,,若與共線,則角()A.15° B.30° C.45° D.60°7.在等差數(shù)列中,,是方程的兩個根,則的前14項和為()A.55 B.60 C.65 D.708.已知圓柱的側(cè)面展開圖是一個邊長為的正方形,則這個圓柱的體積是()A. B. C. D.9.若實數(shù)a>b,則下列結(jié)論成立的是()A.a(chǎn)2>b2 B. C.ln2a>ln2b D.a(chǎn)x2>bx210.已知函數(shù)的圖象過點(diǎn),且在上單調(diào),同時的圖象向左平移個單位之后與原來的圖象重合,當(dāng),且時,,則A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.“”是“數(shù)列依次成等差數(shù)列”的______條件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).12.有6根細(xì)木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.13.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)14.若,,則的值為______.15.設(shè)偶函數(shù)的部分圖像如圖所示,為等腰直角三角形,,則的值為________.16.等差數(shù)列中,則此數(shù)列的前項和_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)求函數(shù)的值域;(2)若恒成立,求m的取值范圍.18.已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,,其前9項和為63.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前項和為,若存在正整數(shù),有,求實數(shù)的取值范圍;(3)將數(shù)列,的項按照“當(dāng)為奇數(shù)時,放在前面;當(dāng)為偶數(shù)時,放在前面”的要求進(jìn)行“交叉排列”,得到一個新的數(shù)列:…,求這個新數(shù)列的前項和.19.已知圓心為的圓過點(diǎn),且與直線相切于點(diǎn)。(1)求圓的方程;(2)已知點(diǎn),且對于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得(為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個,并說明理由。20.在平面直角坐標(biāo)中,圓與圓相交與兩點(diǎn).(I)求線段的長.(II)記圓與軸正半軸交于點(diǎn),點(diǎn)在圓C上滑動,求面積最大時的直線的方程.21.已知向量,,.(1)若,求實數(shù)的值;(2)若,求向量與的夾角.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為數(shù)列的通項公式為,所以其前項和為,令,所以直線方程為,令,解得,即直線在軸上的截距為,故選B.考點(diǎn):數(shù)列求和及直線方程.2、A【解析】

利用等比數(shù)列性質(zhì)可求得,將所求式子利用對數(shù)運(yùn)算法則和等比數(shù)列性質(zhì)可化為,代入求得結(jié)果.【詳解】且本題正確選項:【點(diǎn)睛】本題考查等比數(shù)列性質(zhì)的應(yīng)用,關(guān)鍵是靈活利用等比中項的性質(zhì),屬于基礎(chǔ)題.3、A【解析】

將等式進(jìn)行平方,相加即可得到結(jié)論.【詳解】∵||,||,∴分別平方得2?10,2?6,兩式相減得4?10﹣6=4,即?1,故選A.【點(diǎn)睛】本題主要考查向量的基本運(yùn)算,利用平方進(jìn)行相加是解決本題的關(guān)鍵,比較基礎(chǔ).4、B【解析】∵∴又,∴故選B.5、B【解析】

先將函數(shù)化簡,再根據(jù)三角函數(shù)的圖像性質(zhì)判斷單調(diào)性和對稱性,從而選擇答案.【詳解】

根據(jù)選項有,當(dāng)時,在在上單調(diào)遞增.又即為的對稱軸.當(dāng)時,為的對稱軸.故選:B【點(diǎn)睛】本題考查的單調(diào)性和對稱性質(zhì),屬于中檔題.6、B【解析】由題意,,又為銳角,∴.故選B.7、D【解析】

根據(jù)根與系數(shù)之間的關(guān)系求出a5+a10,利用等差數(shù)列的前n項和公式及性質(zhì)進(jìn)行求解即可.【詳解】∵,是方程的兩個根,可得,∴.故選D.【點(diǎn)睛】本題主要考查等差數(shù)列的前n項和公式的應(yīng)用,考查了等差數(shù)列的性質(zhì)的運(yùn)用,根據(jù)根與系數(shù)之間的關(guān)系建立方程關(guān)系是解決本題的關(guān)鍵.8、A【解析】

由已知易得圓柱的高為,底面圓周長為,求出半徑進(jìn)而求得底面圓半徑即可求出圓柱體積。【詳解】底面圓周長,,所以故選:A【點(diǎn)睛】此題考查圓柱的側(cè)面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。9、C【解析】

特值法排除A,B,D,單調(diào)性判斷C【詳解】由題意,可知:對于A:當(dāng)a、b都是負(fù)數(shù)時,很明顯a2<b2,故選項A不正確;對于B:當(dāng)a為正數(shù),b為負(fù)數(shù)時,則有,故選項B不正確;對于C:∵a>b,∴2a>2b>0,∴l(xiāng)n2a>ln2b,故選項C正確;對于D:當(dāng)x=0時,結(jié)果不成立,故選項D不正確;故選:C.【點(diǎn)評】本題主要考查不等式的性質(zhì)應(yīng)用,特殊值技巧的應(yīng)用,指數(shù)函數(shù)、對數(shù)函數(shù)值大小的比較.本題屬中檔題.10、A【解析】由題設(shè)可知該函數(shù)的周期是,則過點(diǎn)且可得,故,由可得,所以由可得,注意到,故,所以,應(yīng)選答案A點(diǎn)睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對應(yīng)的特殊點(diǎn)求.二、填空題:本大題共6小題,每小題5分,共30分。11、必要非充分【解析】

通過等差數(shù)列的下標(biāo)公式,得到必要條件,通過舉特例證明非充分條件,從而得到答案.【詳解】因為數(shù)列依次成等差數(shù)列,所以根據(jù)等差數(shù)列下標(biāo)公式,可得,當(dāng),時,滿足,但不能得到數(shù)列依次成等差數(shù)列所以綜上,“”是“數(shù)列依次成等差數(shù)列”的必要非充分條件.故答案為:必要非充分.【點(diǎn)睛】本題考查必要非充分條件的證明,等差數(shù)列通項的性質(zhì),屬于簡單題.12、【解析】

分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結(jié)合三棱錐的結(jié)構(gòu)特征,即可求出結(jié)果.【詳解】當(dāng)較長的兩條棱所在直線相交時,如圖所示:不妨設(shè),,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當(dāng)較長的兩條棱所在直線異面時,不妨設(shè),,則,取CD的中點(diǎn)為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以O(shè)A+OB<AB,不能構(gòu)成三角形。所以此情況不存在。故答案為:.【點(diǎn)睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結(jié)構(gòu)特征即可,屬于常考題型.13、①③④⑤【解析】

設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點(diǎn)睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.14、【解析】

求出,將展開即可得解.【詳解】因為,,所以,所以.【點(diǎn)睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎(chǔ)題.15、【解析】的部分圖象如圖所示,為等腰直角三角形,,,函數(shù)是偶函數(shù),,函數(shù)的解析式為,故答案為.【方法點(diǎn)睛】本題主要通過已知三角函數(shù)的圖象求解析式考查三角函數(shù)的性質(zhì),屬于中檔題.利用最值求出,利用圖象先求出周期,用周期公式求出,利用特殊點(diǎn)求出,正確求使解題的關(guān)鍵.求解析時求參數(shù)是確定函數(shù)解析式的關(guān)鍵,往往利用特殊點(diǎn)求的值,由特殊點(diǎn)求時,一定要分清特殊點(diǎn)是“五點(diǎn)法”的第幾個點(diǎn).16、180【解析】由,,可知.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)根據(jù)用配方法求出二次函數(shù)對稱軸橫坐標(biāo),可得最小值,再代入端點(diǎn)求得最大值,可得函數(shù)的值域;(2)由(1)可得的最大值為6,轉(zhuǎn)化為求恒成立,求出m的取值范圍即可.【詳解】(1)因為,而,,,所以函數(shù)的值域為.(2)由(1)知,函數(shù)的值域為,所以的最大值為6,所以由得,解得或,故實數(shù)m的取值范圍為或.【點(diǎn)睛】本題考查二次函數(shù)的值域及最值,不等式恒成立求參數(shù)取值范圍,二次函數(shù)最值問題通常求出對稱軸橫坐標(biāo)代入即可求得最值,由不等式恒成立求參數(shù)取值范圍可轉(zhuǎn)化為函數(shù)最值不等式問題,屬于中等題.18、(1);(2);(3)【解析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項,利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從而易求得和,于是有,只要求得的最大值即可得的最小值,從而得的范圍,研究的單調(diào)性可得;(3)根據(jù)新數(shù)列的構(gòu)造方法,在求新數(shù)列的前項和時,對分類:,和三類,可求解.試題解析:(1)∵,∴數(shù)列是首項為1,公差為的等差數(shù)列,∴,即,∴,又,∴.∵,∴數(shù)列是等差數(shù)列,設(shè)的前項和為,∵且,∴,∴的公差為(2)由(1)知,∴,∴設(shè),則,∴數(shù)列為遞增數(shù)列,∴,∵對任意正整數(shù),都有恒成立,∴.(3)數(shù)列的前項和,數(shù)列的前項和,①當(dāng)時,;②當(dāng)時,,特別地,當(dāng)時,也符合上式;③當(dāng)時,.綜上:考點(diǎn):等差數(shù)列的通項公式,數(shù)列的單調(diào)性,數(shù)列的求和.19、(1)(2)使的面積等于4的點(diǎn)有2個【解析】

(1)利用條件設(shè)圓的標(biāo)準(zhǔn)方程,由圓過點(diǎn)求t,確定圓方程.(2)設(shè),由確定阿波羅尼斯圓方程,與圓C為同一圓,可得,求出N點(diǎn)的坐標(biāo),建立ON方程,,再利用面積求點(diǎn)P到直線的距離,判斷與ON平行且距離為的兩條直線與圓C的位置關(guān)系可得結(jié)論.【詳解】(1)依題意可設(shè)圓心坐標(biāo)為,則半徑為,圓的方程可寫成,因為圓過點(diǎn),∴,∴,則圓的方程為。(2)由題知,直線的方程為,設(shè)滿足題意,設(shè),則,所以,則,因為上式對任意恒成立,所以,且,解得或(舍去,與重合)。所以點(diǎn),則,直線方程為,點(diǎn)到直線的距離,若存在點(diǎn)使的面積等于4,則,∴。①當(dāng)點(diǎn)在直線的上方時,點(diǎn)到直線的距離的取值范圍為,∵,∴當(dāng)點(diǎn)在直線的上方時,使的面積等于4的點(diǎn)有2個;②當(dāng)點(diǎn)在直線的下方時,點(diǎn)到直線的距離的取值范圍為,∵,∴當(dāng)點(diǎn)在直線的下方時,使的面積等于4的點(diǎn)有0個,綜上可知,使的面積等于4的點(diǎn)有2個?!军c(diǎn)睛】本題考查圓的方程,直線與圓的位置關(guān)系,圓的第二定義,考查運(yùn)算能力,分析問題解決問題的能力,屬于難題.20、(I);(II)或.【解析】

(I)先求得相交弦所在的直線方程,再求得圓的圓心到相交弦所在直線的距離,然后利用直線和圓相交所得弦長公式,計算出弦長.(II)先求得當(dāng)時,取得最大值,根據(jù)兩直線垂直時斜率的關(guān)系,求得直線的方程,聯(lián)立直線的方程和圓的方程,求得點(diǎn)的坐標(biāo),由此求得直線的斜率,進(jìn)而求得直線的方程.【詳解】(I)由圓O與圓C方程相減可知,相交弦PQ的方程為.點(diǎn)(0,0)到直線PQ的距離,(Ⅱ),.當(dāng)時,取得最大值.此時,又則直線NC為.由,或當(dāng)點(diǎn)時,,此時MN的方程為.當(dāng)點(diǎn)時,,此時MN的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論