版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省漳州市龍海市市級名校2021-2022學年中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或142.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關系是()A.相交B.內切C.外離D.內含3.平面上直線a、c與b相交(數(shù)據(jù)如圖),當直線c繞點O旋轉某一角度時與a平行,則旋轉的最小度數(shù)是()A.60° B.50° C.40° D.30°4.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)5.某市初中學業(yè)水平實驗操作考試,要求每名學生從物理,化學、生物三個學科中隨機抽取一科參加測試,小華和小強都抽到物理學科的概率是()A. B. C. D.6.(3分)學校要組織足球比賽.賽制為單循環(huán)形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據(jù)題意,下面所列方程正確的是()A.B.C.D.7.△ABC在正方形網格中的位置如圖所示,則cosB的值為()A. B. C. D.28.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現(xiàn)售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.459.如圖是二次函數(shù)的圖象,有下面四個結論:;;;,其中正確的結論是
A. B. C. D.10.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD11.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m12.如圖,將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.14.關于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.15.如圖,在矩形ABCD中,過點A的圓O交邊AB于點E,交邊AD于點F,已知AD=5,AE=2,AF=1.如果以點D為圓心,r為半徑的圓D與圓O有兩個公共點,那么r的取值范圍是______.16.圓錐的底面半徑為2,母線長為6,則它的側面積為_____.17.將直線y=x+b沿y軸向下平移3個單位長度,點A(-1,2)關于y軸的對稱點落在平移后的直線上,則b的值為____.18.分解因式:ax2﹣2ax+a=___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)規(guī)定:不相交的兩個函數(shù)圖象在豎直方向上的最短距離為這兩個函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點與交點之間的距離,你同意他的看法嗎?請說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.20.(6分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數(shù)y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數(shù)解析式;求點C的坐標.21.(6分)在一個不透明的盒子里,裝有三個分別寫有數(shù)字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數(shù)字相同;兩次取出小球上的數(shù)字之和大于1.22.(8分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.23.(8分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;△A2B2C2的面積是平方單位.24.(10分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數(shù)y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.25.(10分)某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:售價x/(元/千克)506070銷售量y/千克1008060(1)求y與x之間的函數(shù)表達式;設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少時獲得最大利潤,最大利潤是多少?26.(12分)如圖,在每個小正方形的邊長為1的網格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)27.(12分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關系式,當x取何值時,y有最大值?并求出y的最大值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉換,關于x軸對稱的點和拋物線的關系.2、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關系.3、C【解析】
先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質即可得出結論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質,用到的知識點為:兩直線平行,同旁內角互補.4、A【解析】
首先根據(jù)各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質,利用已知確定各點位置是解題關鍵.5、A【解析】
作出樹狀圖即可解題.【詳解】解:如下圖所示一共有9中可能,符合題意的有1種,故小華和小強都抽到物理學科的概率是,故選A.【點睛】本題考查了用樹狀圖求概率,屬于簡單題,會畫樹狀圖是解題關鍵.6、B.【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.7、A【解析】
解:在直角△ABD中,BD=2,AD=4,則AB=,則cosB=.故選A.8、C【解析】
根據(jù)題意列出代數(shù)式,化簡即可得到結果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點睛】本題考查的知識點是列代數(shù)式,解題的關鍵是熟練的掌握列代數(shù)式.9、D【解析】
根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據(jù)拋物線開口方向得到,根據(jù)對稱軸得到,根據(jù)拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,注意用數(shù)形結合的思想解決問題。10、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.
故選B.【點睛】本題考查了平行四邊形的判定與性質,注意根據(jù)題意證得四邊形BFDE是平行四邊形是關鍵.11、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.12、B【解析】
根據(jù)圖形旋轉的性質得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉的性質,等腰三角形和直角三角形的性質,掌握等腰三角形和直角三角形的性質定理,是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40°【解析】
直接利用三角形內角和定理得出∠6+∠7的度數(shù),進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.14、1【解析】
先根據(jù)根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關系是解題的關鍵.15、【解析】
因為以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交,圓心距滿足關系式:|R-r|<d<R+r,求得圓D與圓O的半徑代入計算即可.【詳解】連接OA、OD,過O點作ON⊥AE,OM⊥AF.AN=AE=1,AM=AF=2,MD=AD-AM=3∵四邊形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四邊形OMAN是矩形∴OM=AN=1∴OA=,OD=∵以點D為圓心,r為半徑的圓D與圓O有兩個公共點,則圓D與圓O相交∴【點睛】本題考查了圓與圓相交的條件,熟記圓與圓相交時圓的半徑與圓心距的關系是關鍵.16、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側面積公式求出它的側面積.解:根據(jù)圓錐的側面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.17、1【解析】試題分析:先根據(jù)一次函數(shù)平移規(guī)律得出直線y=x+b沿y軸向下平移3個單位長度后的直線解析式y(tǒng)=x+b﹣3,再把點A(﹣1,2)關于y軸的對稱點(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點:一次函數(shù)圖象與幾何變換18、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】
(1)把y=x2﹣2x+3配成頂點式得到拋物線上的點到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對他的看法進行判斷;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點為拋物線y=x2﹣2x+3任意一點,作PQ∥y軸交直線y=x﹣1于Q,設P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當t=時,PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點向x軸作垂線與直線相交,拋物線頂點與交點之間的距離為2,∴不同意他的看法;(3)M點為拋物線y=x2﹣2x+3任意一點,作MN∥y軸交拋物線于N,設M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當t=時,MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質,正確理解新定義是解題的關鍵.20、(1)反比例函數(shù)解析式為y=;(2)C點坐標為(2,1)【解析】
(1)由S△BOD=1可得BD的長,從而可得D的坐標,然后代入反比例函數(shù)解析式可求得k,從而得解析式為y=;(2)由已知可確定A點坐標,再由待定系數(shù)法求出直線AB的解析式為y=2x,然后解方程組即可得到C點坐標.【詳解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)將D(1,2)代入y=,得2=,∴k=8,∴反比例函數(shù)解析式為y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A點坐標為(1,8),設直線OA的解析式為y=kx,把A(1,8)代入得1k=8,解得k=2,∴直線AB的解析式為y=2x,解方程組得或,∴C點坐標為(2,1).21、(1);(2).【解析】
根據(jù)列表法或樹狀圖看出所有可能出現(xiàn)的結果共有多少種,再求出兩次取出小球上的數(shù)字相同的結果有多少種,根據(jù)概率公式求出該事件的概率.【詳解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(兩數(shù)相同)=.(2)P(兩數(shù)和大于1)=.【點睛】本題考查了利用列表法、畫樹狀圖法求等可能事件的概率.22、(1)證明見解析;(1)證明見解析;(3)1.【解析】
(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對的弧相等得出結論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據(jù)平行線的性質得出對應邊成比例,進而得出結論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補角與余角的性質可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計算出邊的長,根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質得出對應邊成比例,進而得出結論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點O作OM⊥AD于點M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點E,CF⊥AD于點F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長EO交AB于點H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【點睛】本題考查了相似三角形的判定與性質和圓的相關知識點,解題的關鍵是熟練的掌握相似三角形的判定與性質和圓的相關知識點.23、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理24、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】
(1)利用反比例函數(shù)圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數(shù)法即可求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷即可;(3)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據(jù)三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數(shù)圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次(反比例)函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及三角形的面積,解題的關鍵是:(1)根據(jù)點的坐標利用待定系數(shù)法求出直線AB的解析式;(1)根據(jù)函數(shù)圖像判斷不等式取值范圍;(3)根據(jù)三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.25、(1)y=-2x+200(2)W=-2x2+280x-8000(3)售價為70元時,獲得最大利潤,這時最大利潤為1800元.【解析】
(1)用待定系數(shù)法求一次函數(shù)的表達式;(2)利用利潤的定義,求與之間的函數(shù)表達式;(3)利用二次函數(shù)的性質求極值.【詳解】解:(1)設,由題意,得,解得,∴所求函數(shù)表達式為.(2).(3),其中,∵,∴當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年終末期患者跌倒預防環(huán)境改造的成本控制策略
- 2025年佛山市順德一中西南學校招聘考試真題
- 老年物質濫用(如酒精、藥物依賴)干預方案
- 老年晚期腫瘤患者多重用藥管理方案
- 2026年及未來5年市場數(shù)據(jù)中國防靜電包裝材料行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報告
- 2026年及未來5年市場數(shù)據(jù)中國電子商務旅游行業(yè)發(fā)展?jié)摿︻A測及投資戰(zhàn)略、數(shù)據(jù)研究報告
- 2026年及未來5年市場數(shù)據(jù)中國花菜行業(yè)市場深度研究及投資策略研究報告
- 老年慢性病患者健康傳播精準化方案
- 四年級上冊《摸球游戲》教學設計
- 老年患者認知功能衰退的信息適配方案
- 寒假生活有計劃主題班會
- 羅馬機場地圖
- 實習生醫(yī)德醫(yī)風培訓
- 橫穿公路管道施工方案
- 真空澆注工安全操作規(guī)程(3篇)
- 快樂讀書吧:非洲民間故事(專項訓練)-2023-2024學年五年級語文上冊(統(tǒng)編版)
- GB/T 19609-2024卷煙用常規(guī)分析用吸煙機測定總粒相物和焦油
- 公路工程標準施工招標文件(2018年版)
- 高處安全作業(yè)票(證)模板
- (正式版)JTT 728.2-2024 裝配式公路鋼橋+第2部分:構件管理養(yǎng)護報廢技術要求
- 醫(yī)源性藥物依賴防范和報告專家講座
評論
0/150
提交評論