版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南京十三中2025屆高一下數(shù)學期末統(tǒng)考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若對任意,不等式恒成立,則a的取值范圍為()A. B. C. D.2.已知,,且,則在方向上的投影為()A. B. C. D.3.向正方形ABCD內(nèi)任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.4.已知各項均為正數(shù)的數(shù)列的前項和為,且若對任意的,恒成立,則實數(shù)的取值范圍為()A. B. C. D.5.已知200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,時速在的汽車輛數(shù)為()A.8 B.80 C.65 D.706.圓與圓的位置關(guān)系是()A.相切 B.內(nèi)含 C.相離 D.相交7.過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為()A. B. C. D.8.一個幾何體的三視圖如圖所示,則幾何體的體積是()A. B. C. D.19.已知,則的值等于()A. B. C. D.10.在四邊形中,如果,,那么四邊形的形狀是()A.矩形 B.正方形 C.菱形 D.直角梯形二、填空題:本大題共6小題,每小題5分,共30分。11.記等差數(shù)列的前項和為,若,則________.12.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,若,則_____.13.正方體中,異面直線和所成角的余弦值是________.14.如圖,在△中,三個內(nèi)角、、所對的邊分別為、、,若,,為△外一點,,,則平面四邊形面積的最大值為________15.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.16.觀察下列式子:你可歸納出的不等式是___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐P-ABCD中,底面ABCD,,,,M為線段AD上一點,,N為PC的中點.(1)證明:平面PAB;(2)求直線AN與平面PMN所成角的余弦值.18.已知函數(shù)的圖象向左平移個單位長度后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求函數(shù)的單調(diào)遞減區(qū)間及圖象的對稱軸方程.19.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.20.如圖,在四棱錐中,,側(cè)面底面.(1)求證:平面平面;(2)若,且二面角等于,求直線與平面所成角的正弦值.21.已知數(shù)列滿足,,其中實數(shù).(I)求證:數(shù)列是遞增數(shù)列;(II)當時.(i)求證:;(ii)若,設(shè)數(shù)列的前項和為,求整數(shù)的值,使得最?。?/p>
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
對任意,不等式恒成立,即恒成立,代入計算得到答案.【詳解】對任意,不等式恒成立即恒成立故答案為D【點睛】本題考查了不等式恒成立問題,意在考查學生的計算能力和解決問題的能力.2、C【解析】
通過數(shù)量積計算出夾角,然后可得到投影.【詳解】,,即,,在方向上的投影為,故選C.【點睛】本題主要考查向量的幾何背景,建立數(shù)量積方程是解題的關(guān)鍵,難度不大.3、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.4、C【解析】
由得到an=n,任意的,恒成立等價于,利用作差法求出的最小值即可.【詳解】當n=1時,,又∴∵an+12=2Sn+n+1,∴當n≥2時,an2=2Sn﹣1+n,兩式相減可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵數(shù)列{an}是各項均為正數(shù)的數(shù)列,∴an+1=an+1,即an+1﹣an=1,顯然n=1時,適合上式∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立記,,∴為單調(diào)增數(shù)列,即的最小值為∴,即故選C【點睛】已知求的一般步驟:(1)當時,由求的值;(2)當時,由,求得的表達式;(3)檢驗的值是否滿足(2)中的表達式,若不滿足則分段表示;(4)寫出的完整表達式.5、B【解析】
先計算時速在的汽車頻率,再乘200,?!驹斀狻坑蓤D知:時速在的汽車頻率為所以時速在的汽車輛數(shù)為,選B.【點睛】本題考查頻率分布直方圖,屬于基礎(chǔ)題。6、D【解析】
寫出兩圓的圓心,根據(jù)兩點間距離公式求得兩圓心的距離,發(fā)現(xiàn),所以兩圓相交。比較三者之間大小判斷位置關(guān)系?!驹斀狻績蓤A的圓心分別為:,,半徑分別為:,,兩圓心距為:,所以,兩圓相交,選D?!军c睛】通過比較圓心距和半徑和與半徑差直接的關(guān)系判斷,即比較三者之間大小。7、C【解析】
設(shè)雙曲線的方程為:,(a>0,b>0),依題意知當點C在坐標原點時,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得雙曲線離心率e的取值范圍.求出最小值.【詳解】設(shè)雙曲線的方程為:,(a>0,b>0),∵雙曲線關(guān)于x軸對稱,且直線AB⊥x軸,設(shè)左焦點F1(﹣c,0),則A(﹣c,),B(﹣c,),∵△ABC為直角三角形,依題意知,當點C在坐標原點時,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即雙曲線離心率e的最小值為:.故選:C【點睛】本題考查雙曲線的簡單性質(zhì),分析得到當點C在坐標原點時,∠ACB最大是關(guān)鍵,得到∠AOF1≥45°是突破口,屬于中檔題.8、C【解析】
由三視圖知幾何體為三棱錐,且三棱錐的高為,底面是直角邊長分別為1,的直角三角形,代入體積公式計算可得答案.【詳解】解:由三視圖知幾何體為三棱錐,且三棱錐的高為,底面是直角邊長分別為1,的直角三角形,∴三棱柱的體積V.故選:C.【點睛】本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量.9、D【解析】,所以,則,故選擇D.10、C【解析】試題分析:因為,所以,即四邊形的對角線互相垂直,排除選項AD;又因為,所以四邊形對邊平行且相等,即四邊形為平行四邊形,但不能確定鄰邊垂直,所以只能確定為菱形.考點:1.向量相等的定義;2.向量的垂直;二、填空題:本大題共6小題,每小題5分,共30分。11、10【解析】
由等差數(shù)列求和的性質(zhì)可得,求得,再利用性質(zhì)可得結(jié)果.【詳解】因為,所以,所以,故故答案為10【點睛】本題考查了等差數(shù)列的性質(zhì),熟悉其性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.12、【解析】
先利用同角三角函數(shù)的商數(shù)關(guān)系可得,再結(jié)合正弦定理及余弦定理化簡可得,然后求解即可.【詳解】解:因為,則,所以,即,所以,則,即,即即,故答案為:.【點睛】本題考查了同角三角函數(shù)的商數(shù)關(guān)系,重點考查了正弦定理及余弦定理的應用,屬中檔題.13、【解析】
由,可得異面直線和所成的角,利用直角三角形的性質(zhì)可得結(jié)果.【詳解】因為,所以異面直線和所成角,設(shè)正方體的棱長為,則直角三角形中,,,故答案為.【點睛】本題主要考查異面直線所成的角,屬于中檔題題.求異面直線所成的角的角,先要利用三角形中位線定理以及平行四邊形找到異面直線所成的角,然后利用直角三角形的性質(zhì)及余弦定理求解,如果利用余弦定理求余弦,因為異面直線所成的角是直角或銳角,所以最后結(jié)果一定要取絕對值.14、【解析】
根據(jù)題意和正弦定理,化簡得,進而得到,在中,由余弦定理,求得,進而得到,,得出四邊形的面積為,再結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,在中,因為,所以,可得,即,所以,所以,又因為,可得,所以,即,因為,所以,在中,,由余弦定理,可得,又因為,所以為等腰直角三角形,所以,又因為,所以四邊形的面積為,當時,四邊形的面積有最大值,最大值為.故答案為:.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.15、10【解析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.16、【解析】
觀察三個已知式子的左邊和右邊,第1個不等式左邊可改寫成;第2個不等式左邊的可改寫成,右邊的可改寫成;第3個不等式的左邊可改寫成;據(jù)此可發(fā)現(xiàn)第個不等式的規(guī)律.【詳解】觀察三個已知式子的左邊和右邊,第1個式子可改寫為:,第2個式子可改寫為:,第3個式子可改寫為:,所以可歸納出第個不等式是:.故答案為:.【點睛】本題考查歸納推理,考查學生分析、解決問題的能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)如圖所示,為中點,連接,證明為平行四邊形得到答案.(2)分別以為軸建立直角坐標系,平面的法向量為,計算向量夾角得到答案.【詳解】(1)如圖所示,為中點,連接.為中點,N為PC的中點,故,,,故,且,故為平行四邊形.故,平面,故平面PAB.(2)中點為,,故,故,底面ABCD,故,.分別以為軸建立直角坐標系,則,,,,.設(shè)平面的法向量為,則,即,取得到,故,故直線AN與平面PMN所成角的余弦值為.【點睛】本題考查了線面平行,線面夾角,意在考查學生的空間想象能力和計算能力.18、(1),;(2)減區(qū)間為,對稱軸方程為【解析】
(1)先根據(jù)平移后周期不變求得,再根據(jù)三角函數(shù)的平移方法求得即可.(2)根據(jù)(1)中,代入可得,利用輔助角公式求得,再代入調(diào)遞減區(qū)間及圖象的對稱軸方程求解即可.【詳解】(1)因為函數(shù)的圖象向左平移個單位長度后與函數(shù)圖象重合,所以.所以,因為,所以.(2)由(1),,所以,.令,解得所以函數(shù)的單調(diào)遞減區(qū)間為.令,可得圖象的對稱軸方程為.【點睛】本題主要考查了三角函數(shù)的平移運用以及輔助角公式.同時也考查了根據(jù)三角函數(shù)的解析式求解單調(diào)區(qū)間以及對稱軸等方法.屬于中檔題.19、(1)(2)【解析】
(1)由題意求得所在直線的斜率再由直線方程點斜式求的方程,然后利用點到直線的距離公式求解;(2)設(shè)的坐標,由題意列式求得的坐標,再求出,代入三角形面積公式求解.【詳解】(1)由題意,,直線的方程為,即.點到直線的距離;(2)設(shè),則的中點坐標為,則,解得,即,.的面積.【點睛】本題考查點到直線的距離公式的應用,考查點關(guān)于直線的對稱點的求法,是基礎(chǔ)題.20、(1)證明見解析;(2).【解析】
(1)由得,,由側(cè)面底面得側(cè)面,由面面垂直的判定即可證明;(2)由側(cè)面,可得,得是二面角的平面角,,推得為等腰直角三角形,取的中點,連接可得,由平面平面,得平面,證明平面,得點到平面的距離等于點到平面的距離,,再利用求解即可【詳解】(1)證明:由可得,因為側(cè)面底面,交線為底面且則側(cè)面,平面所以,平面平面;(2)由側(cè)面可得,,則是二面角的平面角,由可得,為等腰直角三角形取的中點,連接可得因為平面平面,交線為平面且所以平面,點到平面的距離為.因為平面則平面所以點到平面的距離等于點到平面的距離,.設(shè),則在中,;在中,設(shè)直線與平面所成角為即所以,直線與平面所成角的正弦值為.【點睛】本題考查面面垂直的判定,二面角及線面角的求解,考查空間想象能與運算求解能力,關(guān)鍵是線面平行的性質(zhì)得到點D到面的距離,是中檔題21、(I)證明見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年秋季中國石油天然氣集團有限公司西部鉆探工程有限公司高校畢業(yè)生招聘(公共基礎(chǔ)知識)綜合能力測試題附答案
- 2026北京科技大學教師崗位招聘筆試備考題庫及答案解析
- 2026天津中醫(yī)藥大學2026年第二批招聘4人筆試參考題庫及答案解析
- 2025廣東廣州市越秀區(qū)林業(yè)和園林局招聘輔助人員1人考試參考題庫附答案
- 2025年湖南益陽安化縣醫(yī)療衛(wèi)生單位備案制護理人員招聘15人(第二批)(公共基礎(chǔ)知識)綜合能力測試題附答案
- 2025年武漢長江新區(qū)公開招聘社區(qū)專職工作人員53人(公共基礎(chǔ)知識)綜合能力測試題附答案
- 2025年河南信息科技學院籌建處公開選調(diào)工作人員20名備考題庫附答案
- 2026春季云南昭通市綏江縣玉泉幼兒園編外臨聘教師招聘5人筆試模擬試題及答案解析
- 2026安徽皖信人力資源管理有限公司招聘駕駛員2人筆試備考題庫及答案解析
- 2026中國聯(lián)通博州分公司招聘10人(新疆)筆試模擬試題及答案解析
- 上海市二級甲等綜合醫(yī)院評審標準(2024版)
- 藥物發(fā)錯藥不良事件分析
- 油漆班組安全晨會(班前會)
- 消費類半固態(tài)電池項目可行性研究報告
- DBJ04∕T 398-2019 電動汽車充電基礎(chǔ)設(shè)施技術(shù)標準
- 山東省濟南市2024年1月高二上學期學情期末檢測英語試題含解析
- 口腔門診醫(yī)療質(zhì)控培訓
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- HGT4134-2022 工業(yè)聚乙二醇PEG
- 小學教職工代表大會提案表
- ESC2023年心臟起搏器和心臟再同步治療指南解讀
評論
0/150
提交評論