河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題含解析_第1頁
河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題含解析_第2頁
河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題含解析_第3頁
河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題含解析_第4頁
河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省永州市新田縣第一中學2025屆高一下數(shù)學期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的部分圖像如圖所示,則A.B.C.D.2.等比數(shù)列,…的第四項等于(

)A.-24 B.0 C.12 D.243.已知在等差數(shù)列中,的等差中項為,的等差中項為,則數(shù)列的通項公式()A. B.-1 C.+1 D.-34.在中,內角,,的對邊分別為,,,且=.則A. B. C. D.5.下列不等式中正確的是()A.若,,則B.若,則C.若,則D.若,則6.已知是等差數(shù)列的前項和,.若對恒成立,則正整數(shù)構成的集合是()A. B. C. D.7.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形8.若向量,且,則等于()A. B. C. D.9.若,,則()A. B. C. D.10.從一批產品中取出三件產品,設事件為“三件產品全不是次品”,事件為“三件產品全是次品”,事件為“三件產品不全是次品”,則下列結論正確的是()A.事件與互斥 B.事件與互斥C.任何兩個事件均互斥 D.任何兩個事件均不互斥二、填空題:本大題共6小題,每小題5分,共30分。11.用數(shù)學歸納法證明不等式“(且)”的過程中,第一步:當時,不等式左邊應等于__________。12.函數(shù)的最小正周期是________.13.已知數(shù)列是等比數(shù)列,若,,則公比________.14.已知正實數(shù)x,y滿足2x+y=2,則xy的最大值為______.15.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.16.把二進制數(shù)1111(2)化為十進制數(shù)是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù).(1)求函數(shù)的最小正周期.(2)求函數(shù)的單調遞減區(qū)間;(3)設為的三個內角,若,,且為銳角,求.18.已知公差不為0的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.設數(shù)列的前項和為,滿足,且,數(shù)列滿足,對任意的,且成等比數(shù)列,其中.(1)求數(shù)列的通項公式(2)記,證明:當且時,20.已知等差數(shù)列滿足,且是的等比中項.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,求使成立的最大正整數(shù)的值.21.如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點,為的中點,過點,,的平面交于.(1)求證:平面;(2)若時,求二面角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】試題分析:由題圖知,,最小正周期,所以,所以.因為圖象過點,所以,所以,所以,令,得,所以,故選A.【考點】三角函數(shù)的圖像與性質【名師點睛】根據(jù)圖像求解析式問題的一般方法是:先根據(jù)函數(shù)圖像的最高點、最低點確定A,h的值,由函數(shù)的周期確定ω的值,再根據(jù)函數(shù)圖像上的一個特殊點確定φ值.2、A【解析】由x,3x+3,6x+6成等比數(shù)列得選A.考點:該題主要考查等比數(shù)列的概念和通項公式,考查計算能力.3、D【解析】試題分析:由于數(shù)列是等差數(shù)列,所以的等差中項是,故有,又有的等差中項是,所以,從而等差數(shù)列的公差,因此其通項公式為,故選D.考點:等差數(shù)列.4、C【解析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應用.5、D【解析】

根據(jù)不等式的性質逐一判斷即可得解.【詳解】解:對于選項A,若,,不妨取,則,即A錯誤;對于選項B,若,當時,則,即B錯誤;對于選項C,若,不妨取,則,即C錯誤;對于選項D,若,則,即,,即D正確,故選:D.【點睛】本題考查了不等式的性質,屬基礎題.6、A【解析】

先分析出,即得k的值.【詳解】因為因為所以.所以,所以正整數(shù)構成的集合是.故選A【點睛】本題主要考查等差數(shù)列前n項和的最小值的求法,意在考查學生對該知識的理解掌握水平和分析推理能力.7、B【解析】

利用正弦定理結合條件,得到,再由,結合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內角,所以,因為,所以,由余弦定理得.為的內角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.8、B【解析】

根據(jù)坐標形式下向量的平行對應的等量關系,即可計算出的值,再根據(jù)坐標形式下向量的加法即可求解出的坐標表示.【詳解】因為且,所以,所以,所以.故選:B.【點睛】本題考查根據(jù)坐標形式下向量的平行求解參數(shù)以及向量加法的坐標運算,難度較易.已知,若則有.9、D【解析】

利用集合的補集的定義求出的補集;利用子集的定義判斷出.【詳解】解:,,,,故選:.【點睛】本題考查利用集合的交集、補集、并集定義求交集、補集、并集;利用集合包含關系的定義判斷集合的包含關系.10、B【解析】

根據(jù)互斥事件的定義,逐個判斷,即可得出正確選項.【詳解】為三件產品全不是次品,指的是三件產品都是正品,為三件產品全是次品,為三件產品不全是次品,它包括一件次品,兩件次品,三件全是正品三個事件由此知:與是互斥事件;與是包含關系,不是互斥事件;與是互斥事件,故選B.【點睛】本題主要考查互斥事件定義的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

用數(shù)學歸納法證明不等式(且),第一步,即時,分母從3到6,列出式子,得到答案.【詳解】用數(shù)學歸納法證明不等式(且),第一步,時,左邊式子中每項的分母從3開始增大至6,所以應是.即為答案.【點睛】本題考查數(shù)學歸納法的基本步驟,屬于簡單題.12、【解析】

根據(jù)函數(shù)的周期公式計算即可.【詳解】函數(shù)的最小正周期是.故答案為【點睛】本題主要考查了正切函數(shù)周期公式的應用,屬于基礎題.13、【解析】

利用等比數(shù)列的通項公式即可得出.【詳解】∵數(shù)列是等比數(shù)列,若,,則,解得,即.故答案為:【點睛】本題考查了等比數(shù)列的通項公式,考查了計算能力,屬于基礎題.14、【解析】

由基本不等式可得,可求出xy的最大值.【詳解】因為,所以,故,當且僅當時,取等號.故答案為.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.15、【解析】

設點,由和列方程組解出、的值,可得出向量的坐標.【詳解】設點的坐標為,則,由,得,解得,因此,,故答案為.【點睛】本題考查向量的坐標運算,解題時要將一些條件轉化為與向量坐標相關的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.16、.【解析】

由二進制數(shù)的定義可將化為十進制數(shù).【詳解】由二進制數(shù)的定義可得,故答案為:.【點睛】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)減區(qū)間為,(3)【解析】

利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結論.利用正弦函數(shù)的單調性,求得函數(shù)的單調遞減區(qū)間.利用同角三角函數(shù)的基本關系、兩角和的正弦公式,求得的值.【詳解】函數(shù),故它的最小正周期為.對于函數(shù),令,求得,可得它的減區(qū)間為,.中,若,.若,,為銳角,..【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調性,考查了同角三角函數(shù)的基本關系、兩角和的正弦公式的應用,屬于中檔題.18、(1)(2)【解析】

試題分析:(1)由已知條件,利用等差數(shù)列的前n項和公式和通項公式及等比數(shù)列的性質列出方程組,求出等差數(shù)列的首項和公差,由此能求出數(shù)列{an}的通項公式;(2)由題意推導出bn=22n+1+1,由此利用分組求和法能求出數(shù)列{bn}的前n項和.詳解:(Ⅰ)設等差數(shù)列的公差為.因為,所以.①因為成等比數(shù)列,所以.②由①,②可得:.所以.(Ⅱ)由題意,設數(shù)列的前項和為,,,所以數(shù)列為以為首項,以為公比的等比數(shù)列所以點睛:這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關系,求表達式,一般是寫出作差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等.19、(1).;.(2)證明見解析.【解析】

(1)當時,由,兩式相減得,用等差中項確定是等差數(shù)列再求通項公式.令,根據(jù)成等比數(shù)列,求得,從而得到(2)由(1)知根據(jù)證明的結構使用放縮法,得到,再相消法求和.【詳解】(1)當時,由,得,兩式相減得,當時,,所以是等差數(shù)列.又因為,所以,所以,所以..令,因為成等比數(shù)列,所以,所以,所以,又因為.,所以.(2)由(1)知,因為,所以,.同理所以所以.所以當且時,【點睛】本題主要考查了數(shù)列遞推關系和等比數(shù)列的性質,放縮法證明數(shù)列不等式問題,屬于難題.20、(1)(2)8【解析】

(1)設等差數(shù)列的公差為,根據(jù)題意列出有關和的方程組,可解出和的值,從而可求出數(shù)列的通項公式;(2)先得出,利用裂項法求出數(shù)列的前項和,然后解不等式,可得出的取值范圍,于此可得出的最大值.【詳解】(1)設等差數(shù)列的公差為,,即,∴,是,的等比中項,∴,即,解得.∴數(shù)列的通項公式為;(2)由(1)得∴.由,得,∴使得成立的最大正整數(shù)的值為8.【點睛】本題考查等差數(shù)列的通項公式,考查裂項求和法,解等差數(shù)列的通項公式,一般是利用方程思想求出等差數(shù)列的首項和公差,利用這兩個基本兩求出等差數(shù)列的通項公式,考查運算求解能力,屬于中等題.21、(1)證明見解析;(2)【解析】

(1)首先證明平面,由平面平面,可說明,由此可得四邊形為平行四邊形,即可證明平面;(2)延長交于點,過點作交直線于點,則即為二面角的平面角,求出的余弦值即可得到答案.【詳解】(1)∵為矩形∴,平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論