2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆吉林省通鋼一中、集安一中、梅河口五中等聯(lián)誼校數(shù)學(xué)高一下期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量與的夾角為,且,則()A. B. C. D.2.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形3.已知函數(shù)在上是x的減函數(shù),則a的取值范圍是()A. B. C. D.4.已知銳角中,角所對的邊分別為,若,則的取值范圍是()A. B. C. D.5.已知中,,,點是的中點,是邊上一點,則的最小值是()A. B. C. D.6.在,,,是邊上的兩個動點,且,則的取值范圍為()A. B. C. D.7.已知,那么()A. B. C. D.8.某程序框圖如圖所示,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入的條件可以為()A. B. C. D.9.函數(shù)的定義域是()A. B.C. D.10.已知圓:關(guān)于直線對稱的圓為圓:,則直線的方程為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,,,則__________.12.若數(shù)列是等差數(shù)列,則數(shù)列也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若正項數(shù)列是等比數(shù)列,則數(shù)列_________也是等比數(shù)列.13.已知,,,是球的球面上的四點,,,兩兩垂直,,且三棱錐的體積為,則球的表面積為______.14.在正方體的體對角線與棱所在直線的位置關(guān)系是______.15.已知一圓錐的側(cè)面展開圖為半圓,且面積為S,則圓錐的底面積是_______16.?dāng)?shù)列中,如果存在使得“,且”成立(其中,),則稱為的一個“谷值”。若且存在“谷值”則實數(shù)的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值及相應(yīng)的值.18.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面積.19.直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.20.已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列;(2)求數(shù)列的前項和.21.已知函數(shù).(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若,求的最大值與最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)平面向量數(shù)量積的運算法則,將平方運算可得結(jié)果.【詳解】∵,∴,∴cos=4,∴,故選A.【點睛】本題考查了利用平面向量的數(shù)量積求模的應(yīng)用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎(chǔ)題目.2、C【解析】

利用二倍角公式化簡已知表達式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因為,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點睛】本題考查三角形的形狀的判斷,余弦定理的應(yīng)用,考查計算能力,屬于中檔題.3、C【解析】

由復(fù)合函數(shù)單調(diào)性及函數(shù)的定義域得不等關(guān)系.【詳解】由題意,解得.故選:C.【點睛】本題考查對數(shù)型復(fù)合函數(shù)的單調(diào)性,解題時要注意對數(shù)函數(shù)的定義域.4、B【解析】

利用余弦定理化簡后可得,再利用正弦定理把邊角關(guān)系化為角的三角函數(shù)的關(guān)系式,從而得到,因此,結(jié)合的范圍可得所求的取值范圍.【詳解】,因為為銳角三角形,所以,,,故,選B.【點睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.5、B【解析】

通過建系以及數(shù)量積的坐標(biāo)運算,從而轉(zhuǎn)化為函數(shù)的最值問題.【詳解】根據(jù)題意,建立圖示直角坐標(biāo)系,,,則,,,.設(shè),則,是邊上一點,當(dāng)時,取得最小值,故選.【點睛】本題主要考察解析法在向量中的應(yīng)用,將平面向量的數(shù)量積轉(zhuǎn)化成了函數(shù)的最值問題.6、A【解析】由題意,可以點為原點,分別以為軸建立平面直角坐標(biāo)系,如圖所示,則點的坐標(biāo)分別為,直線的方程為,不妨設(shè)點的坐標(biāo)分別為,,不妨設(shè),由,所以,整理得,則,即,所以當(dāng)時,有最小值,當(dāng)時,有最大值.故選A.點睛:此題主要考查了向量數(shù)量積的坐標(biāo)運算,以及直線方程和兩點間距離的計算等方面的知識與技能,還有坐標(biāo)法的運用等,屬于中高檔題,也是??伎键c.根據(jù)題意,把運動(即的位置在變)中不變的因素()找出來,通過坐標(biāo)法建立合理的直角坐標(biāo)系,把點的坐標(biāo)表示出來,再通過向量的坐標(biāo)運算,列出式子,討論其最值,從而問題可得解.7、A【解析】依題意有,故8、D【解析】

由已知可得,該程序是利用循環(huán)結(jié)構(gòu)計算輸出變量S的值,模擬過程分別求出變量的變化情況可的結(jié)果.【詳解】程序在運行過程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時應(yīng)該結(jié)束循環(huán)體,并輸出S的值為26,所以判斷框應(yīng)該填入條件為:故選D【點睛】本題主要考查了程序框圖,屬于基礎(chǔ)題.9、A【解析】

利用復(fù)合函數(shù)求定義域的方法求出函數(shù)的定義域.【詳解】令x+(k∈Z),解得:x(k∈Z),故函數(shù)的定義域為{x|x,k∈Z}故選A.【點睛】本題考查的知識要點:正切函數(shù)的性質(zhì)的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.10、A【解析】

根據(jù)對稱性,求得,求得圓的圓心坐標(biāo),再根據(jù)直線l為線段C1C2的垂直平分線,求得直線的斜率,即可求解,得到答案.【詳解】由題意,圓的方程,可化為,根據(jù)對稱性,可得:,解得:或(舍去,此時半徑的平方小于0,不符合題意),此時C1(0,0),C2(-1,2),直線C1C2的斜率為:,由圓C1和圓C2關(guān)于直線l對稱可知:直線l為線段C1C2的垂直平分線,所以,解得,直線l又經(jīng)過線段C1C2的中點(,1),所以直線l的方程為:,化簡得:,故選A【點睛】本題主要考查了圓與圓的位置關(guān)系的應(yīng)用,其中解答中熟記兩圓的位置關(guān)系,合理應(yīng)用圓對稱性是解答本題的關(guān)鍵,其中著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、16【解析】

依次代入即可求得結(jié)果.【詳解】令,則;令,則;令,則;令,則本題正確結(jié)果:【點睛】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項,屬于基礎(chǔ)題.12、【解析】

利用類比推理分析,若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當(dāng)時,數(shù)列也是等比數(shù)列.【詳解】由數(shù)列是等差數(shù)列,則當(dāng)時,數(shù)列也是等差數(shù)列.類比上述性質(zhì),若數(shù)列是各項均為正數(shù)的等比數(shù)列,則當(dāng)時,數(shù)列也是等比數(shù)列.故答案為:【點睛】類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).13、【解析】

根據(jù)三棱錐的體積可求三棱錐的側(cè)棱長,補體后可求三棱錐外接球的直徑,從而可計算外接球的表面積.【詳解】三棱錐的體積為,故,因為,,兩兩垂直,,故可把三棱錐補成正方體,該正方體的體對角線為三棱錐外接球的直徑,又體對角線的長度為,故球的表面積為.填.【點睛】幾何體的外接球、內(nèi)切球問題,關(guān)鍵是球心位置的確定,必要時需把球的半徑放置在可解的幾何圖形中.如果球心的位置不易確定,則可以把該幾何體補成規(guī)則的幾何體,便于球心位置和球的半徑的確定.14、異面直線【解析】

根據(jù)異面直線的定義,作出圖形,即可求解,得到答案.【詳解】如圖所示,與不在同一平面內(nèi),也不相交,所以體對角線與棱是異面直線.【點睛】本題主要考查了異面直線的概念及其判定,其中熟記異面直線的定義是解答本題的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.15、【解析】

由已知中圓錐的側(cè)面展開圖為半圓且面積為S,我們易確定圓錐的母線長l與底面半徑R之間的關(guān)系,進而求出底面面積即可得到結(jié)論.【詳解】如圖:設(shè)圓錐的母線長為l,底面半徑為R若圓錐的側(cè)面展開圖為半圓則2πR=πl(wèi),即l=2R,又∵圓錐的側(cè)面展開圖為半圓且面積為S,則圓錐的底面面積是.故答案為.【點睛】本題考查的知識點是圓錐的表面積,根據(jù)圓錐的側(cè)面展開圖為半圓,確定圓錐的母線長與底面的關(guān)系是解答本題的關(guān)鍵.16、【解析】

求出,,,當(dāng),遞減,遞增,分別討論,,是否存在“谷值”,注意運用單調(diào)性即可.【詳解】解:當(dāng)時,有,,當(dāng),遞減,遞增,且.若時,有,則不存在“谷值”;若時,,則不存在“谷值”;若時,①,則不存在"谷值";②,則不存在"谷值";③,存在"谷值"且為.綜上所述,的取值范圍是故答案為:【點睛】本題考查新定義及運用,考查數(shù)列的單調(diào)性和運用,正確理解新定義是迅速解題的關(guān)鍵,是一道中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最小值為,此時.【解析】

通過倍角公式,把化成標(biāo)準(zhǔn)形式,研究函數(shù)的相關(guān)性質(zhì)(周期性,單調(diào)性,奇偶性,對稱性,最值及最值相對于的變量),從而本題能順利完成【詳解】(1)因為.所以函數(shù)的最小正周期為.(2)當(dāng)時,,此時,,,所以的最小值為,此時.【點睛】該類型考題關(guān)鍵是將化成性質(zhì),只有這樣,我們才能很好的去研究他的性質(zhì).18、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大邊對大角可求C為銳角,根據(jù)同角三角函數(shù)基本關(guān)系式可求cosC的值.(2)利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinB的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)由題意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C為銳角,∴cosC===,(2)因為A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC?AB?sinB=.【點睛】本題主要考查了正弦定理,大邊對大角,同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.19、或【解析】

直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.20、(1)證明見解析;(2)【解析】

(1)將已知條件湊配成,由此證得數(shù)列為等差數(shù)列.(2)由(1)求得數(shù)列的通項公式,進而求得的表達式,利用分組求和法求得.【詳解】(1)證明:∵∴又∵∴所以數(shù)列是首項為1,公差為2的等差數(shù)列;(2)由(1)知,,所以.所以【點睛】本小題主要考查根據(jù)遞推關(guān)系式證明等差數(shù)列,考查分組求和法,屬于中檔題.21、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】

(1)利用三角恒等變換,化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性,得出結(jié)論;(2)利用正弦函數(shù)的單調(diào)性,求出f(x)的單調(diào)增區(qū)間;(3)利用正弦函數(shù)的定義域和值域,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論