版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東湛江市大成中學2024年高一下數學期末聯考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數圖象的一條對稱軸在內,則滿足此條件的一個值為()A. B. C. D.2.已知角的終邊經過點,則的值是()A. B. C. D.3.執(zhí)行如圖所示的程序框圖,輸出S的值為()A.- B. C.- D.4.設x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]5.已知向量,向量,且,那么等于()A. B. C. D.6.已知數列滿足,,則()A.1024 B.2048 C.1023 D.20477.已知定義域的奇函數的圖像關于直線對稱,且當時,,則()A. B. C. D.8.將所有的正奇數按以下規(guī)律分組,第一組:1;第二組:3,5,7;第三組:9,11,13,15,17;…表示n是第i組的第j個數,例如,,則()A. B. C. D.9.閱讀程序框圖,運行相應的程序,輸出的結果為()A. B. C. D.10.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.異面直線,所成角為,過空間一點的直線與直線,所成角均為,若這樣的直線有且只有兩條,則的取值范圍為___________________.12.已知數列是等比數列,公比為,且,,則_________.13.在銳角中,角的對邊分別為.若,則角的大小為為____.14.已知不等式的解集為,則________.15.若過點作圓的切線,則直線的方程為_______________.16._________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內角A,B,C的對邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.18.如圖,長方形材料中,已知,.點為材料內部一點,于,于,且,.現要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊,上.(1)設,試將四邊形材料的面積表示為的函數,并指明的取值范圍;(2)試確定點在上的位置,使得四邊形材料的面積最小,并求出其最小值.19.已知向量,的夾角為120°,且||=2,||=3,設32,2.(Ⅰ)若⊥,求實數k的值;(Ⅱ)當k=0時,求與的夾角θ的大?。?0.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統計得頻率分布直方圖如圖所示.(1)經計算估計這組數據的中位數;(2)現按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?21.已知函數.(1)求函數的最小正周期;(2)求函數在區(qū)間上的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
求出函數的對稱軸方程,使得滿足在內,解不等式即可求出滿足此條件的一個φ值.【詳解】解:函數圖象的對稱軸方程為:xk∈Z,函數圖象的一條對稱軸在內,所以當k=0時,φ故選A.【點睛】本題是基礎題,考查三角函數的基本性質,不等式的解法,考查計算能力,能夠充分利用基本函數的性質解題是學好數學的前提.2、D【解析】
首先計算出,根據三角函數定義可求得正弦值和余弦值,從而得到結果.【詳解】由三角函數定義知:,,則:本題正確選項:【點睛】本題考查任意角三角函數的求解問題,屬于基礎題.3、D【解析】試題分析:由已知可得,故選D.考點:程序框圖.4、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標函數即,易知直線在軸上的截距最大時,目標函數取得最小值;在軸上的截距最小時,目標函數取得最大值,即在點處取得最小值,為;在點處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點睛】線性規(guī)劃的實質是把代數問題幾何化,即運用數形結合的思想解題.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數的最大或最小值會在可行域的端點處或邊界上取得.5、D【解析】
由兩向量平行,其向量坐標交叉相乘相等,得到.【詳解】因為,所以,解得:.【點睛】本題考查向量平行的坐標運算,考查基本運算,注意符號的正負.6、C【解析】
根據疊加法求結果.【詳解】因為,所以,因此,選C.【點睛】本題考查疊加法求通項以及等比數列求和,考查基本分析求解能力,屬基礎題.7、D【解析】
根據函數的圖像關于直線對稱可得,再結合奇函數的性質即可得出答案.【詳解】解:∵函數的圖像關于直線對稱,∴,∴,∵奇函數滿足,當時,,∴,故選:D.【點睛】本題主要考查函數的奇偶性與對稱性的綜合應用,屬于基礎題.8、C【解析】
由等差數列求和公式及進行簡單的合情推理可得:2019為第1010個正奇數,設2019在第n組中,則有,,解得:n=32,又前31組共有961個奇數,則2019為第32組的第1010-961=49個數,得解.【詳解】由已知有第n組有2n-1個連續(xù)的奇數,則前n組共有個連續(xù)的奇數,又2019為第1010個正奇數,設2019在第n組中,則有,,解得:n=32,又前31組共有961個奇數,則2019為第32組的第1010-961=49個數,即2019=(32,49),故選:C.【點睛】本題考查歸納推理,解題的關鍵是根據等差數列求和公式分析出規(guī)律,再結合數列的性質求解,屬于中等題.9、D【解析】
按照程序框圖運行程序,直到時輸出結果即可.【詳解】按照程序框圖運行程序輸入,,則,滿足,,則,滿足,,則,滿足,,則,滿足,,則,滿足,,則,不滿足,輸出故選:【點睛】本題考查根據程序框圖計算輸出結果的問題,屬于基礎題.10、A【解析】
利用正弦定理把題設等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將直線,平移到交于點,設平移后的直線為,,如圖,過作及其外角的角平分線,根據題意可以求出的取值范圍.【詳解】將直線,平移到交于點,設平移后的直線為,,如圖,過作及其外角的角平分線,異面直線,所成角為,可知,所以,所以在方向,要使有兩條,則有:,在方向,要使不存在,則有,綜上所述,.故答案為:【點睛】本題考查了異面直線的所成角的有關性質,考查了空間想象能力.12、.【解析】
先利用等比中項的性質計算出的值,然后由可求出的值.【詳解】由等比中項的性質可得,得,所以,,,故答案為.【點睛】本題考查等比數列公比的計算,充分利用等比中項和等比數列相關性質的應用,可簡化計算,屬于中等題.13、【解析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.14、-7【解析】
結合一元二次不等式和一元二次方程的性質,列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、或【解析】
討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結果,較為基礎。16、3【解析】
分式上下為的二次多項式,故上下同除以進行分析.【詳解】由題,,又,故.
故答案為:3.【點睛】本題考查了分式型多項式的極限問題,注意:當時,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)由正弦定理將邊化為對應角的正弦值,即可求出結果;(2)由余弦定理和三角形的面積公式聯立,即可求出結果.【詳解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面積為.的周長為5+.【點睛】本題主要考查正弦定理和余弦定理解三角形,屬于基礎題型.18、(1)見解析;(2)當時,四邊形材料的面積最小,最小值為.【解析】分析:(1)通過直角三角形的邊角關系,得出和,進而得出四邊形材料的面積的表達式,再結合已知尺寸條件,確定角的范圍.(2)根據正切的兩角差公式和換元法,化簡和整理函數表達式,最后由基本不等式,確定面積最小值及對應的點在上的位置.詳解:解:(1)在直角中,因為,,所以,所以,在直角中,因為,,所以,所以,所以,.(2)因為,令,由,得,所以,當且僅當時,即時等號成立,此時,,,答:當時,四邊形材料的面積最小,最小值為.點睛:本題考查三角函數的實際應用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,注意換元法和基本不等式的合理運用.換元法求函數的值域,通過引入新變量(輔助式,輔助函數等),把所有分散的已知條件聯系起來,將已知條件和要求的結果結合起來,把隱藏在條件中的性質顯現出來,或把繁瑣的表達式簡化,之后就可以利用各種常見的函數的圖象和性質或基本不等式來解決問題.常見的換元方法有代數和三角代換兩種.要特別注意原函數的自變量與新函數自變量之間的關系.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用⊥,結合向量的數量積的運算公式,得到關于的方程,即可求解;(Ⅱ)當時,利用向量的數量積的運算公式,以及向量的夾角公式,即可求解.【詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以與的夾角θ的大小為.【點睛】本題主要考查了向量的數量積的運算,以及向量的夾角公式的應用,其中解答中熟記向量的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)中位數為268.75;(2);(3)選B方案【解析】
(1)根據中位數左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所以中位數在內,設中位數為,則有,解得.故中位數為268.75.(2)設質量在內的4個芒果分別為,,,,質量在內的2個芒果分別為,.從這6個芒果中選出3個的情況共有,,,,,,,,,,,,,,,,,,,,共計20種,其中恰有一個在內的情況有,,,,,,,,,,,,共計12種,因此概率.(3)方案A:元.方案B:由題意得低于250克:元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理崗位晉級與職業(yè)規(guī)劃
- (新教材)2026年滬科版七年級上冊數學 4.4 角 課件
- 中年心臟護理:如何保持健康的體重
- 巨脾患者的舒適護理與提升生活質量
- 2025年辦公室家具租賃合同協議
- 解讀中華人民共和國《黃河保護法》修訂專題
- 運用HFMEA管理構建醫(yī)護一體化模式降低老年手術患者術中低體溫發(fā)生率
- 2025年工業(yè)數字服務平臺推廣方案
- 在線預訂平臺發(fā)展研究
- 2026 年中職康復工程技術(康復設備制作)試題及答案
- 2025年廣東省第一次普通高中學業(yè)水平合格性考試(春季高考)英語試題(含答案詳解)
- 2026年合同全生命周期管理培訓課件與風險防控手冊
- 特殊兒童溝通技巧培訓
- 理賠管理經驗分享
- 中國馬克思主義與當代2024版教材課后思考題答案
- 2026年日歷表(每月一頁、可編輯、可備注)
- DB44∕T 1297-2025 聚乙烯單位產品能源消耗限額
- 2025年歷城語文面試題目及答案
- 援疆工作調研報告
- 機車-受電弓碳滑板磨耗檢測
- 數學建模電子教材
評論
0/150
提交評論