版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
常州市“12校合作聯(lián)盟”2023-2024學(xué)年數(shù)學(xué)高一下期末考試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知兩個(gè)變量x,y之間具有線性相關(guān)關(guān)系,試驗(yàn)測(cè)得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.22.若,滿足,則的最大值為().A. B. C. D.3.直線過(guò)且在軸與軸上的截距相等,則的方程為()A. B.C.和 D.4.設(shè)為銳角三角形,則直線與兩坐標(biāo)軸圍成的三角形的面積的最小值是()A.10 B.8 C.4 D.25.如果直線與平面不垂直,那么在平面內(nèi)()A.不存在與垂直的直線 B.存在一條與垂直的直線C.存在無(wú)數(shù)條與垂直的直線 D.任意一條都與垂直6.過(guò)點(diǎn)且與直線平行的直線方程是()A. B.C. D.7.設(shè)函數(shù),若關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.將兩個(gè)長(zhǎng)、寬、高分別為5,4,3的長(zhǎng)方體壘在一起,使其中兩個(gè)面完全重合,組成一個(gè)大長(zhǎng)方體,則大長(zhǎng)方體的外接球表面積的最大值為()A. B. C. D.9.已知的定義域?yàn)?,若?duì)于,,,,,分別為某個(gè)三角形的三邊長(zhǎng),則稱(chēng)為“三角形函數(shù)”,下例四個(gè)函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.10.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,面積為,則________.12.已知呈線性相關(guān)的變量,之間的關(guān)系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計(jì)當(dāng)為時(shí),的值為_(kāi)_____.13.在等比數(shù)列中,,,則_____.14.函數(shù)f(x)=coscos的最小正周期為_(kāi)_______.15.已知sin+cosα=,則sin2α=__16.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說(shuō)法:①當(dāng)吋,不等式的解集②當(dāng)吋,不等式的解集為③當(dāng)>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說(shuō)法正確的序號(hào)是_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知的頂點(diǎn),邊上的高所在的直線方程為,為的中點(diǎn),且所在的直線方程為.(1)求頂點(diǎn)的坐標(biāo);(2)求過(guò)點(diǎn)且在軸、軸上的截距相等的直線的方程.18.如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點(diǎn),為的中點(diǎn),過(guò)點(diǎn),,的平面交于.(1)求證:平面;(2)若時(shí),求二面角的余弦值.19.已知內(nèi)角的對(duì)邊分別是,若,,.(1)求;(2)求的面積.20.如圖,四面體中,,,為的中點(diǎn).(1)證明:;(2)已知是邊長(zhǎng)為2正三角形.(Ⅰ)若為棱的中點(diǎn),求的大??;(Ⅱ)若為線段上的點(diǎn),且,求四面體的體積的最大值.21.眉山市位于四川西南,有“千載詩(shī)書(shū)城,人文第一州”的美譽(yù),這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國(guó)慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識(shí)競(jìng)賽.已知甲、乙兩隊(duì)參賽,每隊(duì)3人,每人回答一個(gè)問(wèn)題,答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為,,,且各人回答正確與否相互之間沒(méi)有影響.(1)分別求甲隊(duì)總得分為0分;2分的概率;(2)求甲隊(duì)得2分乙隊(duì)得1分的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:設(shè)樣本中線點(diǎn)為,其中,即樣本中心點(diǎn)為,因?yàn)榛貧w直線必過(guò)樣本中心點(diǎn),將代入四個(gè)選項(xiàng)只有B,C成立,畫(huà)出散點(diǎn)圖分析可知兩個(gè)變量x,y之間正相關(guān),故C正確.考點(diǎn):回歸直線方程2、D【解析】作出不等式組,所表示的平面區(qū)域,如圖所示,當(dāng)時(shí),可行域?yàn)樗倪呅蝺?nèi)部,目標(biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,此時(shí),,當(dāng)時(shí),可行域?yàn)槿切?,目?biāo)函數(shù)可化為,即,平移直線可知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,從而最大,,綜上,的最大值為.故選.點(diǎn)睛:利用線性規(guī)劃求最值的步驟:(1)在平面直角坐標(biāo)系內(nèi)作出可行域.(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見(jiàn)的類(lèi)型有截距型(型)、斜率型(型)和距離型(型).(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類(lèi)型,并結(jié)合可行域確定最優(yōu)解.(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值.注意解答本題時(shí)不要忽視斜率不存在的情形.3、B【解析】
對(duì)直線是否過(guò)原點(diǎn)分類(lèi)討論,若直線過(guò)原點(diǎn)滿足題意,求出方程;若直線不過(guò)原點(diǎn),在軸與軸上的截距相等,且不為0,設(shè)直線方程為將點(diǎn)代入,即可求解.【詳解】若直線過(guò)原點(diǎn)方程為,在軸與軸上的截距均為0,滿足題意;若直線過(guò)原點(diǎn),依題意設(shè)方程為,代入方程無(wú)解.故選:B.【點(diǎn)睛】本題考查直線在上的截距關(guān)系,要注意過(guò)原點(diǎn)的直線在軸上的截距是軸上的截距的任意倍,屬于基礎(chǔ)題.4、B【解析】
令,得直線在x、y軸上的截距,求得三角形面積并利用二倍角公式化簡(jiǎn),根據(jù)三角函數(shù)圖象和性質(zhì)求得面積最小值即可.【詳解】令得直線在y軸上的截距為,令得直線在x軸上的截距為,其圍成的三角形面積:,求S的最小值轉(zhuǎn)化為求函數(shù)的最小值,因?yàn)闉殇J角,所以,當(dāng)時(shí)取最小值?1,則,故圍成三角形面積最小值為8.故選:B.【點(diǎn)睛】本題考查直線方程與三角函數(shù)二倍角公式的應(yīng)用,綜合題性較強(qiáng),屬于中等題.5、C【解析】
因?yàn)橹本€l與平面不垂直,必然會(huì)有一條直線與其垂直,而所有與該直線平行直線也與其垂直,因此選C6、D【解析】
先由題意設(shè)所求直線為:,再由直線過(guò)點(diǎn),即可求出結(jié)果.【詳解】因?yàn)樗笾本€與直線平行,因此,可設(shè)所求直線為:,又所求直線過(guò)點(diǎn),所以,解得,所求直線方程為:.故選:D【點(diǎn)睛】本題主要考查求直線的方程,熟記直線方程的常見(jiàn)形式即可,屬于基礎(chǔ)題型.7、B【解析】
由已知中函數(shù),若關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,可以根據(jù)函數(shù)的圖象分析出實(shí)數(shù)的取值范圍.【詳解】函數(shù)的圖象如下圖所示:關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,令t=f(x),可得t2﹣at+2=0,(*)則方程(*)的兩個(gè)解在(1,2],可得,解得,故選:B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,其中根據(jù)已知中函數(shù)的解析式,畫(huà)出函數(shù)的圖象,再利用數(shù)形結(jié)合是解答本題的關(guān)鍵.8、B【解析】
要計(jì)算長(zhǎng)方體的外接球表面積就是要求出外接球的半徑,根據(jù)長(zhǎng)方體的對(duì)角線是外接球的直徑這一性質(zhì),就可以求出外接球的表面積,分類(lèi)討論:(1)長(zhǎng)寬的兩個(gè)面重合;(2)長(zhǎng)高的兩個(gè)面重合;(3)高寬兩個(gè)面重合,分別計(jì)算出新長(zhǎng)方體的對(duì)角線,然后分別計(jì)算出外接球的表面積,最后通過(guò)比較即可求出最大值.【詳解】(1)當(dāng)長(zhǎng)寬的兩個(gè)面重合,新的長(zhǎng)方體的長(zhǎng)為5,寬為4,高為6,對(duì)角線長(zhǎng)為:,所以大長(zhǎng)方體的外接球表面積為;(2)當(dāng)長(zhǎng)高兩個(gè)面重合,新的長(zhǎng)方體的長(zhǎng)5,寬為8,高為3,對(duì)角線長(zhǎng)為:,所以大長(zhǎng)方體的外接球表面積為;(3)當(dāng)寬高兩個(gè)面重合,新的長(zhǎng)方體的長(zhǎng)為10,寬為4,高為3,對(duì)角線長(zhǎng)為:,所以大長(zhǎng)方體的外接球表面積為,顯然大長(zhǎng)方體的外接球表面積的最大值為,故本題選B.【點(diǎn)睛】本題考查了長(zhǎng)方體外接球的半徑的求法,考查了分類(lèi)討論思想,考查了球的表面積計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力.9、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因?yàn)閱握{(diào)遞增,無(wú)最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點(diǎn)睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問(wèn)題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進(jìn)行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.10、C【解析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點(diǎn)D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個(gè)棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知利用三角形面積公式可求c,進(jìn)而利用余弦定理可求a的值,根據(jù)正弦定理即可計(jì)算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點(diǎn)睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.12、【解析】由表格得,又線性回歸直線過(guò)點(diǎn),則,即,令,得.點(diǎn)睛:本題考查線性回歸方程的求法和應(yīng)用;求線性回歸方程是??嫉幕A(chǔ)題型,其主要考查線性回歸方程一定經(jīng)過(guò)樣本點(diǎn)的中心,一定要注意這一點(diǎn),如本題中利用線性回歸直線過(guò)中心點(diǎn)求出的值.13、1【解析】
由等比數(shù)列的性質(zhì)可得,結(jié)合通項(xiàng)公式可得公比q,從而可得首項(xiàng).【詳解】根據(jù)題意,等比數(shù)列中,其公比為,,則,解可得,又由,則有,則,則;故答案為:1.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式以及等比數(shù)列性質(zhì)(其中m+n=p+q)的應(yīng)用,也可以利用等比數(shù)列的基本量來(lái)解決.14、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期為T(mén)==215、【解析】∵,∴即,則.故答案為:.16、③【解析】
利用等比數(shù)列的通項(xiàng)公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),解為;若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),不等式無(wú)解.對(duì)照A、B、C、D,只有C正確.故選C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式,考查解一元二次不等式,難點(diǎn)是解一元二次不等式,注意分類(lèi)討論,本題中需對(duì)二次項(xiàng)系數(shù)分正負(fù),然后以要對(duì)兩根分大小,另外還有一個(gè)是相應(yīng)的一元二次方程是否有實(shí)數(shù)解分類(lèi)(本題已經(jīng)有兩解,不需要這個(gè)分類(lèi)).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】
(1)首先確定直線的斜率,從而得到直線的方程;因?yàn)辄c(diǎn)是直線與的交點(diǎn),聯(lián)立兩條直線可求得點(diǎn)坐標(biāo);(2)設(shè),利用中點(diǎn)坐標(biāo)公式表示出;根據(jù)在直線上,在直線上,可構(gòu)造方程組,求得點(diǎn)坐標(biāo);根據(jù)截距相等,可分為截距為和不為兩種情況來(lái)分別求解出直線方程.【詳解】(1)由已知得:直線的方程為:,即:由,解得:的坐標(biāo)為(2)設(shè),則則,解得:直線在軸、軸上的截距相等當(dāng)直線經(jīng)過(guò)原點(diǎn)時(shí),設(shè)直線的方程為把點(diǎn)代入,得:,解得:此時(shí)直線的方程為:當(dāng)直線不經(jīng)過(guò)原點(diǎn)時(shí),設(shè)直線的方程為把點(diǎn)代入,得:,解得:此時(shí)直線的方程為直線的方程為:或【點(diǎn)睛】本題考查直線交點(diǎn)、直線方程的求解問(wèn)題,易錯(cuò)點(diǎn)是在已知截距相等的情況下,忽略截距為零的情況,造成丟根.18、(1)證明見(jiàn)解析;(2)【解析】
(1)首先證明平面,由平面平面,可說(shuō)明,由此可得四邊形為平行四邊形,即可證明平面;(2)延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作交直線于點(diǎn),則即為二面角的平面角,求出的余弦值即可得到答案.【詳解】(1)∵為矩形∴,平面,平面∴平面.又因?yàn)槠矫嫫矫?,?為中點(diǎn),為中點(diǎn),所以平行且等于,即四邊形為平行四邊形所以,平面,平面所以平面(2)不妨設(shè),.因?yàn)闉橹悬c(diǎn),為等邊三角形,所以,,且∵,所以有平面,故因?yàn)槠矫嫫矫妗嗥矫?,又,∴平面,則延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作交直線于點(diǎn),由于平行且等于,所以為中點(diǎn),,由于,,,所以平面,則,所以即為二面角的平面角在中,,,所以,所以.【點(diǎn)睛】本題考查線面平行的證明,以及二面角的余弦值的求法,考查學(xué)生空間想象能力,計(jì)算能力,由一定綜合性.19、(1);(2).【解析】
(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面積公式,即可求解三角形的面積.【詳解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合題意,舍去,(2)由(1)知,所以,所以的面積為.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪個(gè)定理更合適,要抓住能夠利用某個(gè)定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(1)證明見(jiàn)解析;(2)(Ⅰ);(Ⅱ)【解析】
(1)取中點(diǎn),連接,通過(guò)證明,證得平面,由此證得.(2)(I)通過(guò)證明,證得平面,由此證得,利用“直斜邊的中線等于斜邊的一半”這個(gè)定理及其逆定理,證得.(II)利用求得四面體的體積的表達(dá)式,結(jié)合基本不等式求得四面體的體積的最大值.【詳解】(1)取的中點(diǎn),所以,所以.又因?yàn)?,所以,?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 婦幼保健院行為干預(yù)方法方案
- 生產(chǎn)線優(yōu)化設(shè)計(jì)方案審批使用手冊(cè)式
- 餐飲文化宣傳與推廣方案
- 標(biāo)準(zhǔn)化廠房動(dòng)態(tài)管理系統(tǒng)方案
- 健康生活運(yùn)動(dòng)競(jìng)技活動(dòng)方案
- 防腐蝕工程項(xiàng)目風(fēng)險(xiǎn)管理方案
- 土石方施工圖紙審核方案
- 2026年汽車(chē)原理與維修技術(shù)知識(shí)點(diǎn)考試題
- 2026年網(wǎng)絡(luò)文學(xué)內(nèi)容策劃與推廣筆試題
- 防腐材料使用壽命評(píng)估方案
- 采購(gòu)供應(yīng)鏈管理培訓(xùn)課件
- 江蘇省南京鼓樓區(qū)2026屆物理八年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析
- 人教版七年級(jí)英語(yǔ)上冊(cè)全冊(cè)語(yǔ)法知識(shí)點(diǎn)梳理
- 公司洗車(chē)管理辦法
- 大九九乘法口訣表(打印)
- 浦東新區(qū)知識(shí)產(chǎn)權(quán)公共服務(wù)手冊(cè)(2025年修訂版)
- DB11∕T 510-2024 公共建筑節(jié)能工程施工質(zhì)量驗(yàn)收規(guī)程
- 專(zhuān)題:完形填空 七年級(jí)英語(yǔ)下冊(cè)期末復(fù)習(xí)考點(diǎn)培優(yōu)專(zhuān)項(xiàng)魯教版(五四學(xué)制)(含答案解析)
- 新生兒腸造瘺術(shù)后護(hù)理規(guī)范
- 英語(yǔ)滬教版5年級(jí)下冊(cè)
- T/CPFIA 0005-2022含聚合態(tài)磷復(fù)合肥料
評(píng)論
0/150
提交評(píng)論