版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市中央民族大學附中2025屆高一下數(shù)學期末復習檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度2.若,且,則下列不等式中正確的是()A. B. C. D.3.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于若第一個單音的頻率為,則第八個單音的頻率為()A. B. C. D.4.一組數(shù)據(jù)0,1,2,3,4的方差是A. B. C.2 D.45.在ΔABC中,角A,B,C所對的邊分別為a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.6.如圖,在平面直角坐標系xOy中,角α0≤α≤π的始邊為x軸的非負半軸,終邊與單位圓的交點為A,將OA繞坐標原點逆時針旋轉(zhuǎn)π2至OB,過點B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)A. B.C. D.7.傳說古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常在沙灘上面畫點或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):將三角形數(shù)1,3,6,10記為數(shù)列,將可被5整除的三角形數(shù),按從小到大的順序組成一個新數(shù)列,可以推測:()A.1225 B.1275 C.2017 D.20188.已知正數(shù)組成的等比數(shù)列的前8項的積是81,那么的最小值是()A. B. C.8 D.69.直線與直線平行,則實數(shù)a的值為()A. B. C. D.610.已知函數(shù),則不等式的解集為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若過點作圓的切線,則直線的方程為_______________.12.方程的解為_________.13.一個公司共有240名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是.14.如圖,在中,,是邊上一點,,則.15.在數(shù)列中,,,,則_____________.16.等比數(shù)列前n項和為,若,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在數(shù)1和100之間插入個實數(shù),使得這個數(shù)構(gòu)成遞增的等比數(shù)列,將這個數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和.18.若是的一個內(nèi)角,且,求的值.19.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.20.已知函數(shù).(1)求在區(qū)間上的單調(diào)遞增區(qū)間;(2)求在的值域.21.已知是同一平面內(nèi)的三個向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且與垂直,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.2、D【解析】
利用不等式的性質(zhì)依次對選項進行判斷?!驹斀狻繉τ贏,當,且異號時,,故A不正確;對于B,當,且都為負數(shù)時,,故B不正確;對于C,取,則,故不正確;對于D,由于,,則,所以,即,故D正確;故答案選D【點睛】本題主要考查不等式的基本性質(zhì),在解決此類選擇題時,可以用特殊值法,依次對選項進行排除。3、B【解析】
根據(jù)等比數(shù)列通項公式,求得第八個單音的頻率.【詳解】根據(jù)等比數(shù)列通項公式可知第八個單音的頻率為.故選:B.【點睛】本小題主要考查等比數(shù)列的通項公式,考查中國古代數(shù)學文化,屬于基礎(chǔ)題.4、C【解析】
先求得平均數(shù),再根據(jù)方差公式計算?!驹斀狻繑?shù)據(jù)的平均數(shù)為:方差是=2,選C?!军c睛】方差公式,代入計算即可。5、A【解析】
利用正弦定理asinA=【詳解】在ΔABC中,由正弦定理得asinA=故選:A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎(chǔ)題。6、B【解析】BQ=|y點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復.(2)由實際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學問題求解,要注意實際問題中的定義域問題.7、A【解析】
通過尋找規(guī)律以及數(shù)列求和,可得,然后計算,可得結(jié)果.【詳解】根據(jù)題意可知:則由…可得所以故選:A【點睛】本題考查不完全歸納法的應用,本題難點在于找到,屬難題,8、A【解析】
利用等比數(shù)列的通項公式和均值不等式可得結(jié)果.【詳解】由由為正項數(shù)列,可知再由均值不等式可知所以(當且僅當時取等號)故選:A【點睛】本題主要考查等比數(shù)列的通項公式及均值不等式,屬基礎(chǔ)題.9、A【解析】
直接利用斜率相等列方程求解即可.【詳解】因為直線與直線平行,所以,故選:A.【點睛】本題主要考查兩直線平行的性質(zhì):斜率相等,屬于基礎(chǔ)題.10、B【解析】
先判斷函數(shù)的單調(diào)性,把轉(zhuǎn)化為自變量的不等式求解.【詳解】可知函數(shù)為減函數(shù),由,可得,整理得,解得,所以不等式的解集為.故選B.【點睛】本題考查函數(shù)不等式,通常根據(jù)函數(shù)的單調(diào)性轉(zhuǎn)化求解,一般不代入解析式.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設(shè)切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結(jié)果,較為基礎(chǔ)。12、【解析】
根據(jù)特殊角的三角函數(shù)及正切函數(shù)的周期為kπ,即可得到原方程的解.【詳解】則故答案為:【點睛】此題考查學生掌握正切函數(shù)的圖象及周期性,是一道基礎(chǔ)題.13、5【解析】設(shè)一部門抽取的員工人數(shù)為x,則.14、【解析】
由圖及題意得
,
=
∴
=(
)(
)=
+
=
=
.15、5【解析】
利用遞推關(guān)系式依次求值,歸納出:an+6=an,再利用數(shù)列的周期性,得解.【詳解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.則a2018=a6×336+2=a2=5【點睛】本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計算能力.16、【解析】
根據(jù)等比數(shù)列的性質(zhì)得到成等比,從而列出關(guān)系式,又,接著用表示,代入到關(guān)系式中,可求出的值.【詳解】因為等比數(shù)列的前n項和為,則成等比,且,所以,又因為,即,所以,整理得.故答案為:.【點睛】本題考查學生靈活運用等比數(shù)列的性質(zhì)化簡求值,是一道基礎(chǔ)題。解決本題的關(guān)鍵是根據(jù)等比數(shù)列的性質(zhì)得到成等比.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(1)類比等差數(shù)列求和的倒序相加法,將等比數(shù)列前n項積倒序相乘,可求,代入即可求解.(2)由(1)知,利用兩角差的正切公式,化簡,,得,再根據(jù)裂項相消法,即可求解.【詳解】(Ⅰ)由題意,構(gòu)成遞增的等比數(shù)列,其中,則①②①②,并利用等比數(shù)列性質(zhì),得(Ⅱ)由(Ⅰ)知,又所以數(shù)列的前項和為【點睛】(Ⅰ)類比等差數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì),推導等比數(shù)列前項積公式,創(chuàng)新應用型題;(Ⅱ)由兩角差的正切公式,推導連續(xù)兩個自然數(shù)的正切之差,構(gòu)造新型的裂項相消的式子,創(chuàng)新應用型題;本題屬于難題.18、【解析】
本題首先可根據(jù)是的一個內(nèi)角以及得出和,然后對進行平方并化簡可得,最后結(jié)合即可得出結(jié)果.【詳解】因為是的一個內(nèi)角,所以,,因為,所以,,所以,所以.【點睛】本題考查同角三角函數(shù)關(guān)系的應用,考查的公式為,在運算的過程中一定要注意角的取值范圍,考查推理能力,是簡單題.19、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解析】
(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當且僅當時取等號)即面積的最大值為:【點睛】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應用、余弦定理和三角形面積公式的應用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應關(guān)系來進行求解.20、(1)和.(2)【解析】
(1)利用輔助角公式可將函數(shù)化簡為;令可求出的單調(diào)遞增區(qū)間,截取在上的部分即可得到所求的單調(diào)遞增區(qū)間;(2)利用的范圍可求得的范圍,對應正弦函數(shù)的圖象可求得的范圍,進而得到函數(shù)的值域.【詳解】(1)令,解得:令,可知在上單調(diào)遞增令,可知在上單調(diào)遞增在上的單調(diào)遞增區(qū)間為:和(2)當時,即在的值域為:【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間和值域的求解問題;解決此類問題的常用方法是采用整體對應的方式,將整體對應正弦函數(shù)的單調(diào)區(qū)間或整體所處
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 健康系列活動策劃方案(3篇)
- 直播相伴活動策劃方案(3篇)
- 財務管理制度制定依據(jù)(3篇)
- 2026廣東廣州國家實驗室中國數(shù)字肺項目工程技術(shù)中心招聘2人備考考試題庫及答案解析
- 2026河北廊坊師范學院選聘26人參考考試題庫及答案解析
- 2026山東德州市事業(yè)單位招聘初級綜合類崗位人員備考考試題庫及答案解析
- 2026云南省人力資源和社會保障廳所屬事業(yè)單位招聘12人備考考試試題及答案解析
- 2026廣東廣州市華南理工大學醫(yī)院合同制人員招聘2人備考考試題庫及答案解析
- 2026廣東惠州市博羅縣村級經(jīng)濟聯(lián)盟有限公司招聘1人備考考試試題及答案解析
- 入校物品消毒管理制度(3篇)
- 廣東省領(lǐng)航高中聯(lián)盟2024-2025學年高一下學期第一次聯(lián)合考試語文試卷(含答案)
- 社區(qū)健康服務與管理課件
- QGDW1512-2014電力電纜及通道運維規(guī)程
- 投資車行合同協(xié)議書
- 國際消防安全系統(tǒng)規(guī)則
- 靜脈治療新理念
- 高中研究性學習指導課課件系列總結(jié)階段-學生如何開展研究活動
- 心內(nèi)介入治療護理
- 民辦職業(yè)培訓方案模板
- 04S519小型排水構(gòu)筑物(含隔油池)圖集
- 旅居養(yǎng)老可行性方案
評論
0/150
提交評論