版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市龍崗區(qū)東升學校2023-2024學年高三第一次調研測試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的一個零點在區(qū)間內,則實數a的取值范圍是()A. B. C. D.2.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.3.已知向量滿足,且與的夾角為,則()A. B. C. D.4.數列滿足,且,,則()A. B.9 C. D.75.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.6.已知集合,,若AB,則實數的取值范圍是()A. B. C. D.7.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.8.函數y=sin2x的圖象可能是A. B.C. D.9.的展開式中,含項的系數為()A. B. C. D.10.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.11.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.812.函數(且)的圖象可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.14.曲線在點處的切線方程是__________.15.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數,不等式,則實數的取值范圍是______.16.若正三棱柱的所有棱長均為2,點為側棱上任意一點,則四棱錐的體積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.18.(12分)已知函數,為實數,且.(Ⅰ)當時,求的單調區(qū)間和極值;(Ⅱ)求函數在區(qū)間,上的值域(其中為自然對數的底數).19.(12分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.20.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.21.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.22.(10分)2019年6月,國內的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數,求的分布列和數學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數有變化?說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
顯然函數在區(qū)間內連續(xù),由的一個零點在區(qū)間內,則,即可求解.【詳解】由題,顯然函數在區(qū)間內連續(xù),因為的一個零點在區(qū)間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.2、D【解析】
利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.3、A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.4、A【解析】
先由題意可得數列為等差數列,再根據,,可求出公差,即可求出.【詳解】數列滿足,則數列為等差數列,,,,,,,故選:.【點睛】本題主要考查了等差數列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、A【解析】
在中,設,,,結合三角形的內角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據已知條件結合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構思非常巧妙的試題,綜合考查了三角形的內角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數的關系,解決本題的第二個關鍵點在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.6、D【解析】
先化簡,再根據,且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.7、A【解析】
由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.8、D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環(huán)往復.9、B【解析】
在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.10、B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.11、A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.12、D【解析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.函數的基本性質;2.函數的圖象.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.14、【解析】
利用導數的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.15、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數,可得時,的最小值即為點到直線的距離,可得,對于任意的實數,不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.16、【解析】
依題意得,再求點到平面的距離為點到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長均為2,則,點到平面的距離為點到直線的距離所以,所以.故答案為:【點睛】本題考查椎體的體積公式,考查運算能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將代入函數的解析式,將函數的及解析式變形為分段函數,利用二次函數的基本性質可求得函數的值域;(2)由參變量分離法得出在區(qū)間內有解,分和討論,求得函數的最大值,即可得出實數的取值范圍.【詳解】(1)當時,.當時,;當時,.函數的值域為;(2)不等式等價于,即在區(qū)間內有解當時,,此時,,則;當時,,函數在區(qū)間上單調遞增,當時,,則.綜上,實數的取值范圍是.【點睛】本題主要考查含絕對值函數的值域與含絕對值不等式有解的問題,利用絕對值的應用將函數轉化為二次函數,結合二次函數的性質是解決本題的關鍵,考查分類討論思想的應用,屬于中等題.18、(Ⅰ)極大值0,沒有極小值;函數的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數在區(qū)間上的值域,即可得到本題答案.【詳解】當時,,,當時,,函數單調遞增,當時,,函數單調遞減,故當時,函數取得極大值,沒有極小值;函數的增區(qū)間為,減區(qū)間為,,當時,,在上單調遞增,即函數的值域為;當時,,在上單調遞減,即函數的值域為;當時,易得時,,在上單調遞增,時,,在上單調遞減,故當時,函數取得最大值,最小值為,中最小的,當時,,最小值;當,,最小值;綜上,當時,函數的值域為,當時,函數的值域,當時,函數的值域為,當時,函數的值域為.【點睛】本題主要考查利用導數求單調區(qū)間和極值,以及利用導數研究含參函數在給定區(qū)間的值域,考查學生的運算求解能力,體現(xiàn)了分類討論的數學思想.19、(1),;(2)【解析】
(1)解絕對值不等式得,根據不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【點睛】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應用,屬于中檔題.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數學歸納法證明即可得到結果化簡,運用累加法得出結果運用放縮法和累加法進行求證【詳解】(Ⅰ)數學歸納法證明時,①當時,成立;②當時,假設成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數列的綜合,運用數學歸納法證明不等式的成立,結合已知條件進行化簡求出化簡后的結果,利用放縮法求出不等式,然后兩邊同時取對數再進行證明,本題較為困難。21、【解析】
將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系,解題的關鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.22、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學生中隨機抽取1人,該學生在2021年或2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025~2026學年山東省濟南市天橋區(qū)七年級英語第一學期期末考試試題(含答案無聽力原文及音頻)
- 五年級下冊語文期末試卷及答案
- 無領導小組題目及答案
- 初中數學知識樹說課課件
- 2022~2023臨床執(zhí)業(yè)醫(yī)師考試題庫及答案第465期
- 微型小說三題微型小說《在》
- 2022~2023專升本考試題庫及答案第411期
- 二氧化碳氣體保護焊技術要點
- 臨猗事業(yè)編招聘2022年考試模擬試題及答案解析6
- 施工能力考試題及答案
- 生產安全管理三項制度
- 湖南省長沙市雨花區(qū)2025-2026學年上學期九年級物理檢測綜合練習試卷(含答案)
- 2025年黑龍江農墾職業(yè)學院單招職業(yè)傾向性測試題庫附答案
- 《外科手術學基礎》課件
- 拖欠工程款上訪信范文
- 語文-安徽省皖南八校2025屆高三上學期12月第二次大聯(lián)考試題和答案
- 《傳播學概論(第四版)》全套教學課件
- 單位車輛委托處理協(xié)議書
- 2024工傷免責承諾書
- DZ∕T 0321-2018 方解石礦地質勘查規(guī)范(正式版)
- 《上樞密韓太尉書》教學課件
評論
0/150
提交評論