陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第1頁
陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第2頁
陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第3頁
陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第4頁
陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省咸陽市興平市初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個2.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.3.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費(fèi)項(xiàng)目

里程費(fèi)

時長費(fèi)

遠(yuǎn)途費(fèi)

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費(fèi)由里程費(fèi)、時長費(fèi)、遠(yuǎn)途費(fèi)三部分構(gòu)成,其中里程費(fèi)按行車的實(shí)際里程計算;時長費(fèi)按行車的實(shí)際時間計算;遠(yuǎn)途費(fèi)的收取方式為:行車?yán)锍?公里以內(nèi)(含7公里)不收遠(yuǎn)途費(fèi),超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車?yán)锍谭謩e為6公里與8.5公里,如果下車時兩人所付車費(fèi)相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘4.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達(dá)位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為A.40海里 B.60海里 C.70海里 D.80海里5.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,46.在“大家跳起來”的鄉(xiāng)村學(xué)校舞蹈比賽中,某校10名學(xué)生參賽成績統(tǒng)計如圖所示.對于這10名學(xué)生的參賽成績,下列說法中錯誤的是()A.眾數(shù)是90 B.中位數(shù)是90 C.平均數(shù)是90 D.極差是157.式子在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣28.﹣22×3的結(jié)果是()A.﹣5 B.﹣12 C.﹣6 D.129.等式成立的x的取值范圍在數(shù)軸上可表示為(

)A. B. C. D.10.有理數(shù)a,b在數(shù)軸上的對應(yīng)點(diǎn)如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠ACB=90°,AB=8,AB的垂直平分線MN交AC于D,連接DB,若tan∠CBD=,則BD=_____.12.在Rt△ABC中,∠A是直角,AB=2,AC=3,則BC的長為_____.13.在一個不透明的口袋里,裝有僅顏色不同的黑球、白球若干只.某小組做摸球?qū)嶒?yàn):將球攪勻后從中隨機(jī)摸出一個,記下顏色,再放回袋中,不斷重復(fù).下表是活動中的一組數(shù)據(jù),則摸到白球的概率約是_____.摸球的次數(shù)n1001502005008001000摸到白球的次數(shù)m5896116295484601摸到白球的頻率m/n0.580.640.580.590.6050.60114.某物流倉儲公司用如圖A,B兩種型號的機(jī)器人搬運(yùn)物品,已知A型機(jī)器人比B型機(jī)器人每小時多搬運(yùn)20kg,A型機(jī)器人搬運(yùn)1000kg所用時間與B型機(jī)器人搬運(yùn)800kg所用時間相等,設(shè)B型機(jī)器人每小時搬運(yùn)xkg物品,列出關(guān)于x的方程為_____.15.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),頂點(diǎn)在折線M﹣P﹣N上移動,它們的坐標(biāo)分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點(diǎn)A橫坐標(biāo)的最小值為﹣3,則a﹣b+c的最小值是_____.16.方程的解是_____.三、解答題(共8題,共72分)17.(8分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.18.(8分)如圖,⊙O的直徑DF與弦AB交于點(diǎn)E,C為⊙O外一點(diǎn),CB⊥AB,G是直線CD上一點(diǎn),∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補(bǔ)充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.19.(8分)解下列不等式組:20.(8分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點(diǎn)C作AD的垂線,交AD的延長線于點(diǎn)H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關(guān)系,并證明.21.(8分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?2.(10分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE23.(12分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時,點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+∠CBO=180°,求Q點(diǎn)坐標(biāo).24.如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0).(1)求點(diǎn)B的坐標(biāo);(2)已知,C為拋物線與y軸的交點(diǎn).①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);②設(shè)點(diǎn)Q是線段AC上的動點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點(diǎn)P是BC的中點(diǎn),∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點(diǎn).2、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.3、D【解析】

設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費(fèi)和小張的車費(fèi),建立方程求解.【詳解】設(shè)小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點(diǎn)睛】本題考查列方程解應(yīng)用題,讀懂表格中的計價規(guī)則是解題的關(guān)鍵.4、D【解析】分析:依題意,知MN=40海里/小時×2小時=80海里,∵根據(jù)方向角的意義和平行的性質(zhì),∠M=70°,∠N=40°,∴根據(jù)三角形內(nèi)角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故選D.5、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.6、C【解析】

由統(tǒng)計圖中提供的數(shù)據(jù),根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現(xiàn)了5次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是90;∵共有10個數(shù),∴中位數(shù)是第5、6個數(shù)的平均數(shù),∴中位數(shù)是(90+90)÷2=90;∵平均數(shù)是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.7、B【解析】

根據(jù)二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,

故選:B.【點(diǎn)睛】此題主要考查了二次根式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)是非負(fù)數(shù).8、B【解析】

先算乘方,再算乘法即可.【詳解】解:﹣22×3=﹣4×3=﹣1.故選:B.【點(diǎn)睛】本題主要考查了有理數(shù)的混合運(yùn)算,熟練掌握法則是解答本題的關(guān)鍵.有理數(shù)的混合運(yùn)算,先乘方,再乘除,后加減,有括號的先算括號內(nèi)的.9、B【解析】

根據(jù)二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點(diǎn)睛】考查二次根式的意義,解題的關(guān)鍵是熟練運(yùn)用二次根式有意義的條件.10、B【解析】分析:本題是考察數(shù)軸上的點(diǎn)的大小的關(guān)系.解析:由圖知,b<0<a,故①正確,因?yàn)閎點(diǎn)到原點(diǎn)的距離遠(yuǎn),所以|b|>|a|,故②錯誤,因?yàn)閎<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】

由tan∠CBD==設(shè)CD=3a、BC=4a,據(jù)此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案.【詳解】解:在Rt△BCD中,∵tan∠CBD==,

∴設(shè)CD=3a、BC=4a,

則BD=AD=5a,

∴AC=AD+CD=5a+3a=8a,

在Rt△ABC中,由勾股定理可得(8a)2+(4a)2=82,

解得:a=或a=-(舍),

則BD=5a=2,

故答案為2.【點(diǎn)睛】本題考查線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),勾股定理的應(yīng)用,解題關(guān)鍵是熟記性質(zhì)與定理并準(zhǔn)確識圖.12、【解析】

根據(jù)勾股定理解答即可.【詳解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC===,故答案為:【點(diǎn)睛】此題考查勾股定理,關(guān)鍵是根據(jù)勾股定理解答.13、0.1【解析】

根據(jù)表格中的數(shù)據(jù),隨著實(shí)驗(yàn)次數(shù)的增大,頻率逐漸穩(wěn)定在0.1左右,即為摸出白球的概率.【詳解】解:觀察表格得:通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)其中摸到白球的頻率穩(wěn)定在0.1左右,則P白球=0.1.故答案為0.1.【點(diǎn)睛】本題考查了利用頻率估計概率,在同樣條件下,大量反復(fù)試驗(yàn)時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.14、【解析】

設(shè)B型機(jī)器人每小時搬運(yùn)x

kg物品,則A型機(jī)器人每小時搬運(yùn)(x+20)kg物品,根據(jù)“A型機(jī)器人搬運(yùn)1000kg所用時間與B型機(jī)器人搬運(yùn)800kg所用時間相等”可列方程.【詳解】設(shè)B型機(jī)器人每小時搬運(yùn)x

kg物品,則A型機(jī)器人每小時搬運(yùn)(x+20)kg物品,根據(jù)題意可得,故答案為.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,解題的關(guān)鍵是根據(jù)數(shù)量關(guān)系列出關(guān)于x的分式方程.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)數(shù)量關(guān)系列出方程是關(guān)鍵.15、﹣1.【解析】

由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3,可以求出拋物線的a值;當(dāng)頂點(diǎn)在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當(dāng)頂點(diǎn)在M處,點(diǎn)A橫坐標(biāo)為-3,則拋物線的表達(dá)式為:y=a(x+1)2+4,將點(diǎn)A坐標(biāo)(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當(dāng)x=-1時,y=a-b+c,頂點(diǎn)在N處時,y=a-b+c取得最小值,頂點(diǎn)在N處,拋物線的表達(dá)式為:y=-(x-3)2+1,當(dāng)x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點(diǎn)睛】本題考查的是二次函數(shù)知識的綜合運(yùn)用,本題的核心是確定頂點(diǎn)在M、N處函數(shù)表達(dá)式,其中函數(shù)的a值始終不變.16、1【解析】,,x=1,代入最簡公分母,x=1是方程的解.三、解答題(共8題,共72分)17、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進(jìn)而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進(jìn)而得出關(guān)于a,b,c的等式,進(jìn)而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進(jìn)而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實(shí)數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當(dāng)△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點(diǎn):一元二次方程的應(yīng)用.18、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點(diǎn)睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識.注意乘積的形式可以轉(zhuǎn)化為比例的形式,通過證明三角形相似得出.還要注意構(gòu)造直徑所對的圓周角是圓中的常見輔助線.19、﹣2≤x<.【解析】

先分別求出兩個不等式的解集,再求其公共解.【詳解】,解不等式①得,x<,解不等式②得,x≥﹣2,則不等式組的解集是﹣2≤x<.【點(diǎn)睛】本題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解.求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).20、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據(jù)角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質(zhì)得∠B=75°,最后利用三角形內(nèi)角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點(diǎn)F,取BF的中點(diǎn)G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)可得AG=AH,再由線段的和可得結(jié)論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點(diǎn)E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數(shù)量關(guān)系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點(diǎn)F,取BF的中點(diǎn)G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點(diǎn)睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質(zhì)和判定、等腰三角形的性質(zhì)和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質(zhì)是本題的關(guān)鍵,第(2)問構(gòu)建等腰三角形是關(guān)鍵.21、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點(diǎn):相似三角形的判定與性質(zhì).22、證明見解析.【解析】

易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點(diǎn)睛】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知全等三角形的判定與性質(zhì).23、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標(biāo)可求B點(diǎn)坐標(biāo),把A,B坐標(biāo)代入直線解析式,可求k,b(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,設(shè)出P點(diǎn)坐標(biāo),可求出N點(diǎn)坐標(biāo),即可以用t表示S.(3)由PB∥CD,可求P點(diǎn)坐標(biāo),連接OP,交AC于點(diǎn)R,過P點(diǎn)作PN⊥OA于M,交AB于N,過D點(diǎn)作DT⊥OA于T,根據(jù)P的坐標(biāo),可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對稱性可知R在對稱軸上.設(shè)Q點(diǎn)坐標(biāo),根據(jù)△BOR∽△PQS,可求Q點(diǎn)坐標(biāo).【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當(dāng)x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當(dāng)x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論