版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省昌邑市文山中學2025屆高一數(shù)學第二學期期末質量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把十進制數(shù)化為二進制數(shù)為A. B.C. D.2.(2016高考新課標III,理3)已知向量,則ABC=A.30 B.45 C.60 D.1203.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.4.如圖,在圓內隨機撒一把豆子,統(tǒng)計落在其內接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n5.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.6.已知是兩條異面直線,,那么與的位置關系()A.一定是異面 B.一定是相交 C.不可能平行 D.不可能垂直7.在銳角三角形中,,,分別為內角,,的對邊,已知,,,則的面積為()A. B. C. D.8.在中,,,為的外接圓的圓心,則()A. B.C. D.9.已知,則的值為()A. B. C. D.10.有一個內角為120°的三角形的三邊長分別是m,m+1,m+2,則實數(shù)m的值為()A.1 B. C.2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列是等比數(shù)列,若,,則公比________.12.已知x,y=R+,且滿足x2y6,若xy的最大值與最小值分別為M和m,M+m=_____.13.設等比數(shù)列的首項為,公比為,所有項和為1,則首項的取值范圍是____________.14.若存在實數(shù),使不等式成立,則的取值范圍是_______________.15.將函數(shù)的圖象上每一點的橫坐標縮短為原來的一半,縱坐標不變;再向右平移個單位長度得到的圖象,則_________.16.一個圓錐的側面積為,底面積為,則該圓錐的體積為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標為.(1)求點的坐標;(2)求函數(shù)的單調增區(qū)間及對稱軸方程;(3)若把方程的正實根從小到大依次排列為,求的值.18.已知數(shù)列滿足,數(shù)列滿足,其中為的前項和,且(1)求數(shù)列和的通項公式(2)求數(shù)列的前項和.19.已知函數(shù),若,且,,求滿足條件的,.20.某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,100張獎券為一個開獎單位,每個開獎單位設特等獎1個,一等獎10個,二等獎50個,設一張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,可知其概率平分別為.(1)求1張獎券中獎的概率;(2)求1張獎券不中特等獎且不中一等獎的概率.21.如圖,邊長為2的正方形中,(1)點是的中點,點是的中點,將分別沿折起,使兩點重合于點.求證:(2)當時,求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】選C.2、A【解析】試題分析:由題意,得,所以,故選A.【考點】向量的夾角公式.【思維拓展】(1)平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;(2)由向量的數(shù)量積的性質知,,,因此,利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關的問題.3、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長方體的外接球.因為,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點睛】本題主要考查由三視圖還原幾何體,并計算其外接球的表面積,意在考查學生的直觀想象能力和數(shù)學運算能力,屬于基礎題.4、B【解析】試題分析:設正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關的幾何概型問題關鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.5、A【解析】
連接和,由二面角的定義得出,由結合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關鍵在于充分研究圖形的幾何特征,將所求線段與角建立關系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.6、C【解析】
由平行公理,若,因為,所以,與、是兩條異面直線矛盾,異面和相交均有可能.【詳解】、是兩條異面直線,,那么與異面和相交均有可能,但不會平行.因為若,因為,由平行公理得,與、是兩條異面直線矛盾.故選C.【點睛】本題主要考查空間的兩條直線的位置關系的判斷、平行公理等知識,考查邏輯推理能力,屬于基礎題.7、D【解析】由結合題意可得:,故,△ABC為銳角三角形,則,由題意結合三角函數(shù)的性質有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項.點睛:在解決三角形問題中,求解角度值一般應用余弦定理,因為余弦定理在內具有單調性,求解面積常用面積公式,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.8、A【解析】
利用正弦定理可求出的外接圓半徑.【詳解】由正弦定理可得,因此,,故選A.【點睛】本題考查利用正弦定理求三角形外接圓的半徑,考查計算能力,屬于基礎題.9、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.10、B【解析】
由已知利用余弦定理可得,解方程可得的值.【詳解】在三角形中,由余弦定理得:,化簡可得:,解得或(舍).故選:B.【點睛】本題主要考查了余弦定理在解三角形中的應用,考查了方程思想,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用等比數(shù)列的通項公式即可得出.【詳解】∵數(shù)列是等比數(shù)列,若,,則,解得,即.故答案為:【點睛】本題考查了等比數(shù)列的通項公式,考查了計算能力,屬于基礎題.12、【解析】
設,則,可得,然后利用基本不等式得到關于的一元二次方程解方程可得的最大值和最小值,進而得到結論.【詳解】∵x,y=R+,設,則,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值與最小值分別為M和m,∴M,m,∴M+m.【點睛】本題考查了基本不等式的應用和一元二次不等式的解法,考查了轉化思想和運算推理能力,屬于中檔題.13、【解析】
由題意可得得且,可得首項的取值范圍.【詳解】解:由題意得:,,故答案為:.【點睛】本題主要考查等比數(shù)列前n項的和、數(shù)列極限的運算,屬于中檔題.14、;【解析】
不等式轉化為,由于存在,使不等式成立,因此只要求得的最小值即可.【詳解】由題意存在,使得不等式成立,當時,,其最小值為,∴.故答案為.【點睛】本題考查不等式能成立問題,解題關鍵是把問題轉化為求函數(shù)的最值.不等式能成立與不等式恒成立問題的轉化區(qū)別:在定義域上,不等式恒成立,則,不等式能成立,則,不等式恒成立,則,不等式能成立,則.轉化時要注意是求最大值還是求最小值.15、【解析】
由條件根據(jù)函數(shù)的圖象變換規(guī)律,,可得的解析式,從而求得的值.【詳解】將函數(shù)向左平移個單位長度可得的圖象;保持縱坐標不變,橫坐標伸長為原來的倍可得的圖象,故,所以.【點睛】本題主要考查函數(shù))的圖象變換規(guī)律,屬于中檔題.16、【解析】
設圓錐的底面半徑為,母線長為,由圓錐的側面積、圓面積公式列出方程組求解,代入圓錐的體積公式求解.【詳解】設圓錐的底面半徑為,母線長為,其側面積為,底面積為,則,解得,,∴高===,∴==.故答案為:.【點睛】本題考查圓錐的體積的求法,考查圓錐的側面積、底面積、體積公式等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)單調遞增區(qū)間為;對稱軸方程為,;(3)14800【解析】
(1)先求出,令求出點B的坐標;(2)利用復合函數(shù)的單調性原理求函數(shù)的單調增區(qū)間,利用三角函數(shù)的圖像和性質求對稱軸方程;(3)由(2)知對稱軸方程為,,所以,,…,,即得解.【詳解】解:(1)由已知,得∴令,得,,∴,.當時,,∴得坐標為(2)單調遞增區(qū)間,得,∴單調遞增區(qū)間為對稱軸,得,∴對稱軸方程為,(3)由,得,根據(jù)正弦函數(shù)圖象的對稱性,且由(2)知對稱軸方程為,∴,,…,∴【點睛】本題主要考查三角恒等變換和三角函數(shù)的圖像和性質,考查等差數(shù)列求和,意在考查學生對這些知識的理解掌握水平,屬于中檔題.18、(1);(2)【解析】
(1)由題意可得,由等差數(shù)列的通項公式可得;由數(shù)列的遞推式,結合等比數(shù)列的定義和通項公式可得;(2),運用數(shù)列的錯位相減法求和,結合等比數(shù)列的求和公式可得所求和.【詳解】解:(1)由,同乘以得,可知是以2為公差的等差數(shù)列,而,故;又,相減得,,可知是以為公比的等比數(shù)列,而,故;(2)因為,,,兩式相減得.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查化簡運算能力,屬于中檔題.19、,【解析】
利用三角恒等變換,化簡的解析式,從而得出結論.【詳解】解:,∴,待定系數(shù),可得,又,∴,∴,.【點睛】本題主要考查三角恒等變換,屬于基礎題.20、(1)(2)【解析】
(1)1張獎券中獎包括中特等獎、一等獎、二等獎,且、、兩兩互斥,利用互斥事件的概率加法公式求解即可;(2)“1張獎券不中特等獎且不中一等獎”的對立事件為“1張獎券中特等獎或中一等獎”,則利用互斥事件的概率公式求解即可【詳解】(1)1張獎券中獎包括中特等獎、一等獎、二等獎,設“1張獎券中獎”為事件,則,因為、、兩兩互斥,所以故1張獎券中獎的概率為(2)設“1張獎券不中特等獎且不中一等獎”為事件,則事件與“1張獎券中特等獎或中一等獎”為對立事件,所以,故1張獎券不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026貴州省工業(yè)和備考題庫化廳所屬事業(yè)單位招聘3人備考題庫及答案詳解(易錯題)
- 增強塑料手糊成型工藝與操作手冊
- 集成電氣現(xiàn)場服務與售后保障手冊
- 體檢中心護理團隊領導力提升
- 口腔科員工年終總結范文(3篇)
- 客服入職一個月年終總結(3篇)
- 職業(yè)健康風險評估與員工職業(yè)發(fā)展路徑匹配策略
- 職業(yè)健康師資教學工具應用
- 青島2025年山東青島幼兒師范高等專科學校博士長期招聘90人筆試歷年參考題庫附帶答案詳解
- 職業(yè)倦怠綜合征的心理干預方案
- 八年級地理上冊《中國的氣候》探究式教學設計
- 重慶市2026年高一(上)期末聯(lián)合檢測(康德卷)化學+答案
- 2026年湖南郴州市百??毓杉瘓F有限公司招聘9人備考考試題庫及答案解析
- 2026貴州黔東南州公安局面向社會招聘警務輔助人員37人考試備考題庫及答案解析
- 鐵路除草作業(yè)方案范本
- 2026屆江蘇省常州市生物高一第一學期期末檢測試題含解析
- 2026年及未來5年市場數(shù)據(jù)中國高溫工業(yè)熱泵行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 教培機構排課制度規(guī)范
- 2026年檢視問題清單與整改措施(2篇)
- 國家開放大學《基礎教育課程改革專題》形考任務(1-3)試題及答案解析
- 車載HUD產業(yè)發(fā)展趨勢報告(2025)-CAICV智能車載光顯示任務組
評論
0/150
提交評論