2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第1頁
2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第2頁
2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第3頁
2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第4頁
2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆黑龍江省安達市第七中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則下列不等式成立的是()A. B. C. D.2.函數(shù)的定義域是().A. B. C. D.3.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)4.在中,,,,是外接圓上一動點,若,則的最大值是()A.1 B. C. D.25.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.若是一個圓的方程,則實數(shù)的取值范圍是()A. B.C. D.7.同時擲兩個骰子,向上的點數(shù)之和是的概率是()A. B. C. D.8.若,且,則的值是()A. B. C. D.9.在中,若為等邊三角形(兩點在兩側(cè)),則當(dāng)四邊形的面積最大時,()A. B. C. D.10.已知向量,,若,,則的最大值為()A. B. C.4 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.直線與的交點坐標(biāo)為________.12.?dāng)?shù)列滿足,則的前60項和為_____.13.若,其中是第二象限角,則____.14.設(shè),,,,,為坐標(biāo)原點,若、、三點共線,則的最小值是_______.15.當(dāng)時,不等式成立,則實數(shù)k的取值范圍是______________.16.弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數(shù)是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個零點,,求的取值范圍.18.如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.(Ⅰ)求證:平面;(Ⅱ)求證:平面;(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.19.現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.(1)求被選中的概率;(2)求和不全被選中的概率.20.已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時的速度沿直線向海島移動,同時物體乙從海島沿著海島北偏西方向以海里/小時的速度移動.(1)問經(jīng)過多長時間,物體甲在物體乙的正東方向;(2)求甲從海島到達海島的過程中,甲、乙兩物體的最短距離.21.已知⊙C經(jīng)過點、兩點,且圓心C在直線上.(1)求⊙C的方程;(2)若直線與⊙C總有公共點,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用不等式的基本性質(zhì)即可得出結(jié)果.【詳解】因為,所以,所以,故選B【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎(chǔ)題型.2、C【解析】函數(shù)的定義域即讓原函數(shù)有意義即可;原式中有對數(shù),則故得到定義域為.故選C.3、C【解析】

根據(jù)題意,結(jié)合函數(shù)的奇偶性分析可得函數(shù)的解析式,作出函數(shù)圖象,結(jié)合不等式和二次函數(shù)的性質(zhì)以及函數(shù)圖象中的遞減區(qū)間,分析可得答案.【詳解】根據(jù)題意,設(shè)x>0,則-x<0,所以f(-x)=-x因為f(x)是定義在R上的奇函數(shù),所以f(-x)=-x所以f(x)=x即x≥0時,當(dāng)x<0時,f(x)=-x則f(x)的圖象如圖:在區(qū)間(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3時,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故選C.【點睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,利用函數(shù)的奇偶性求出函數(shù)的解析式,根據(jù)圖象解不等式是本題的關(guān)鍵,屬于難題.4、C【解析】

以的中點為原點,建立如圖所示的平面直角坐標(biāo)系,設(shè)M的坐標(biāo)為,,求出點的坐標(biāo),得到,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案.【詳解】以的中點O為原點,以為x軸,建立如圖所示的平面直角坐標(biāo)系,則外接圓的方程為,設(shè)M的坐標(biāo)為,,過點作垂直軸,,,,,,,,,,,,,,,,,,,,,,,其中,,當(dāng)時,有最大值,最大值為,故選C.【點睛】本題考查了向量的坐標(biāo)運算和向量的數(shù)乘運算和正弦函數(shù)的圖象和性質(zhì),以及直角三角形的問題,考查了學(xué)生的分析解決問題的能力,屬于難題.5、C【解析】

由,則只需將函數(shù)的圖象向左平移個單位長度.【詳解】解:因為,所以要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位長度.故選:C.【點睛】本題考查了三角函數(shù)圖像的平移變換,屬基礎(chǔ)題.6、C【解析】

根據(jù)即可求出結(jié)果.【詳解】據(jù)題意,得,所以.【點睛】本題考查圓的一般方程,屬于基礎(chǔ)題型.7、C【解析】

分別計算出所有可能的結(jié)果和點數(shù)之和為的所有結(jié)果,根據(jù)古典概型概率公式求得結(jié)果.【詳解】同時擲兩個骰子,共有種結(jié)果其中點數(shù)之和是的共有:,共種結(jié)果點數(shù)之和是的概率為:本題正確選項:【點睛】本題考查古典概型問題中的概率的計算,關(guān)鍵是能夠準(zhǔn)確計算出總體基本事件個數(shù)和符合題意的基本事件個數(shù),屬于基礎(chǔ)題.8、A【解析】

對兩邊平方,可得,進而可得,再根據(jù),可知,由此即可求出結(jié)果.【詳解】因為,所以,所以,所以,又,所以所以.故選:A.【點睛】本題主要考查了同角的基本關(guān)系,屬于基礎(chǔ)題.9、A【解析】

求出三角形的面積,求出四邊形的面積,運用三角函數(shù)的恒等變換和正弦函數(shù)的值域,求出滿足條件的角的值即可.【詳解】設(shè),,,是正三角形,,由余弦定理得:,,時,四邊形的面積最大,此時.故選A.【點睛】本題考查余弦定理和三角形的面積公式,考查兩角的和差公式和正弦函數(shù)的值域,考查化簡運算能力,屬于中檔題.10、A【解析】

設(shè),由可得點的軌跡方程,再對兩邊平方,利用一元二次函數(shù)的性質(zhì)求出最大值,即可得答案.【詳解】設(shè),,∵,∴,整理得:.∵,∴,當(dāng)時,的最大值為,∴的最大值為.故選:A.【點睛】本題考查向量模的最值、模的坐標(biāo)運算、一元二次函數(shù)的性質(zhì),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意坐標(biāo)法的運用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接聯(lián)立方程得到答案.【詳解】聯(lián)立方程解得即兩直線的交點坐標(biāo)為.故答案為【點睛】本題考查了兩直線的交點,屬于簡單題.12、1830【解析】

由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結(jié)構(gòu)特征,求出的前60項和.【詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數(shù)項的和都等于2,從第二項開始,依次取2個相鄰偶數(shù)項的和構(gòu)成以8為首項,以16為公差的等差數(shù)列,的前60項和為,故答案為:.【點睛】本題主要考查遞推公式的應(yīng)用,考查利用構(gòu)造等差數(shù)列求數(shù)列的前項和,屬于中檔題.13、【解析】

首先要用誘導(dǎo)公式得到角的正弦值,根據(jù)角是第二象限的角得到角的余弦值,再用誘導(dǎo)公式即可得到結(jié)果.【詳解】解:,又是第二象限角故,故答案為.【點睛】本題考查同角的三角函數(shù)的關(guān)系,本題解題的關(guān)鍵是誘導(dǎo)公式的應(yīng)用,熟練應(yīng)用誘導(dǎo)公式是解決三角函數(shù)問題的必備技能,屬于基礎(chǔ)題.14、【解析】

根據(jù)三點共線求得的的關(guān)系式,利用基本不等式求得所求表達式的最小值.【詳解】依題意,由于三點共線,所以,化簡得,故,當(dāng)且僅當(dāng),即時,取得最小值【點睛】本小題主要考查三點共線的向量表示,考查利用基本不等式求最小值,屬于基礎(chǔ)題.15、k∈(﹣∞,1]【解析】

此題先把常數(shù)k分離出來,再構(gòu)造成再利用導(dǎo)數(shù)求函數(shù)的最小值,使其最小值大于等于k即可.【詳解】由題意知:∵當(dāng)0≤x≤1時(1)當(dāng)x=0時,不等式恒成立k∈R(2)當(dāng)0<x≤1時,不等式可化為要使不等式恒成立,則k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵當(dāng)0<x≤1時,g'(x)<0∴g(x)為單調(diào)遞減函數(shù)∴g(x)<g(0)=0∴f'(x)<0即函數(shù)f(x)為單調(diào)遞減函數(shù)所以f(x)min=f(1)=1即k≤1綜上所述,由(1)(2)得k≤1故答案為:k∈(﹣∞,1].【點睛】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題型.16、1【解析】設(shè)扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡表達式,利用求得的值.(2)令,結(jié)合的取值范圍以及三角函數(shù)的零點列不等式,解不等式求得的取值范圍.【詳解】(1),,,即.(2)令,則,,,在上有且只有一個零點,,,的取值范圍為.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)零點問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.18、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)見解析【解析】

(Ⅰ)轉(zhuǎn)化為證明;(Ⅱ)轉(zhuǎn)化為證明,;(Ⅲ)根據(jù)線面平行的性質(zhì)定理.【詳解】(Ⅰ)因為四邊形為正方形,所以,由于平面,平面,所以平面.(Ⅱ)因為四邊形為正方形,所以.平面平面,平面平面,所以平面.所以.取中點,連接.由,,,可得四邊形為正方形.所以.所以.所以.因為,所以平面.(Ⅲ)存在,當(dāng)為的中點時,平面,此時.證明如下:連接交于點,由于四邊形為正方形,所以是的中點,同時也是的中點.因為,又四邊形為正方形,所以,連接,所以四邊形為平行四邊形.所以.又因為平面,平面,所以平面.【點睛】本題考查空間線面的關(guān)系.線面關(guān)系的證明要緊扣判定定理,轉(zhuǎn)化為線線關(guān)系的證明.19、(1);(2).【解析】

(1)從8人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件空間{,,,,,,,,}由18個基本事件組成.由于每一個基本事件被抽取的機會均等,因此這些基本事件的發(fā)生是等可能的.用表示“恰被選中”這一事件,則{,}事件由6個基本事件組成,因而.(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于{},事件有3個基本事件組成,所以,由對立事件的概率公式得.20、(1)小時;(2)海里.【解析】

試題分析:(1)設(shè)經(jīng)過小時,物體甲在物體乙的正東方向,因為小時,所以.則物體甲與海島的距離為海里,物體乙與海島距離為海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根據(jù)二次函數(shù)求的最小值.試題解析:解:(1)設(shè)經(jīng)過小時,物體甲在物體乙的正東方向.如圖所示,物體甲與海島的距離為海里,物體乙與海島距離為海里,,中,由正弦定理得:,即,則.(2)由(1)題設(shè),,,由余弦定理得:∵,∴當(dāng)時,海里.考點:1正弦定理;2余弦定理;3二次函數(shù)求最值.21、(1)(2)【解析】試題分析:(1)解法1:由題意利用待定系數(shù)法可得⊙C方程為.解法2:由題意結(jié)合幾何關(guān)系確定圓心坐標(biāo)和半徑的長度可得⊙C的方程為.(2)解法1:利用圓心到直線的距離與圓的半徑的關(guān)系得到關(guān)系k的不等式,求解不等式可得.解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論