浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省杭州七縣2025屆高一下數(shù)學(xué)期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個體積為的正三棱柱(底面為正三角形,且側(cè)棱垂直于底面的棱柱)的三視圖如圖所示,則該三棱柱的側(cè)視圖的面積為()A. B.3 C. D.122.單位圓中,的圓心角所對的弧長為()A. B. C. D.3.設(shè),則有()A. B. C. D.4.如圖,向量,,的起點與終點均在正方形網(wǎng)格的格點上,若,則()A. B.3 C.1 D.5.邊長為2的正方形內(nèi)有一封閉曲線圍成的陰影區(qū)域.向正方形中隨機(jī)地撒200粒芝麻,大約有80粒落在陰影區(qū)域內(nèi),則此陰影區(qū)域的面積約為()A. B. C. D.6.從裝有兩個紅球和三個黑球的口袋里任取兩個球,那么互斥而不對立的兩個事件是()A.“至少有一個黑球”與“都是黑球” B.“至少有一個黑球”與“至少有一個紅球”C.“恰好有一個黑球”與“恰好有兩個黑球” D.“至少有一個黑球”與“都是紅球”7.將甲、乙兩個籃球隊5場比賽的得分?jǐn)?shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結(jié)論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等8.已知數(shù)列的通項公式是,則等于()A.70 B.28 C.20 D.89.設(shè)等比數(shù)列的前項和為,且,則()A.255 B.375 C.250 D.20010.執(zhí)行如圖的程序框圖,則輸出的λ是()A.-2 B.-4 C.0 D.-2或0二、填空題:本大題共6小題,每小題5分,共30分。11.如圖記錄了甲乙兩名籃球運動員練習(xí)投籃時,進(jìn)行的5組100次投籃的命中數(shù),若這兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等,則______,_________.12.已知,則的最大值是____.13.已知等差數(shù)列,若,則______.14.已知函數(shù),若,則的取值圍為_________.15.已知無窮等比數(shù)列的前項和,其中為常數(shù),則________16.向量滿足,,則向量的夾角的余弦值為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,角的平分線交于點,設(shè),其中.(1)求;(2)若,求的長.18.在中,角的對邊分別為,且.(1)求角的大小;(2)若,求的最大值.19.已知函數(shù)的最小正周期是.(1)求的值及函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時,求函數(shù)的取值范圍.20.已知.(I)若函數(shù)有三個零點,求實數(shù)的值;(II)若對任意,均有恒成立,求實數(shù)的取值范圍.21.已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)側(cè)視圖的寬為求出正三角形的邊長為4,再根據(jù)體積求出正三棱柱的高,再求側(cè)視圖的面積。【詳解】側(cè)視圖的寬即為俯視圖的高,即三角形的邊長為4,又側(cè)視圖的面積為:【點睛】理解:側(cè)視圖的寬即為俯視圖的高,即可求解本題。2、B【解析】

將轉(zhuǎn)化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對的弧長為.故選B.【點睛】本題考查角度與弧度的轉(zhuǎn)化,同時也考查了弧長的計算,考查計算能力,屬于基礎(chǔ)題.3、A【解析】

根據(jù)題意,利用輔助角公式得,對于,根據(jù)同角三角函數(shù)的基本關(guān)系和二倍角公式對進(jìn)行處理,即可得到;對于,利用二倍角公式對變形處理可以得到,再根據(jù)正弦函數(shù)的單調(diào)性即可比較大小.【詳解】由題意得因為正弦函數(shù)在上為增函數(shù),所以,選A.【點睛】本題是一道關(guān)于三角函數(shù)值大小比較的題目,解答本題的關(guān)鍵是掌握三角函數(shù)公式;二倍角公式、輔助角公式、同角三角函數(shù)的基本關(guān)系等.屬于中等題.4、A【解析】

根據(jù)圖像,將表示成的線性和形式,由此求得的值,進(jìn)而求得的值.【詳解】根據(jù)圖像可知,所以,故選A.【點睛】本小題主要考查平面向量的線性運算,考查平面向量基本定理,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5、B【解析】

依題意得,豆子落在陰影區(qū)域內(nèi)的概率等于陰影部分面積與正方形面積之比,即可求出結(jié)果.【詳解】設(shè)陰影區(qū)域的面積為,由題意可得,則.故選:B.【點睛】本題考查隨機(jī)模擬實驗,根據(jù)幾何概型的意義進(jìn)行模擬實驗計算陰影部分面積,關(guān)鍵在于掌握幾何概型的計算公式.6、C【解析】分析:利用對立事件、互斥事件的定義求解.詳解:從裝有兩個紅球和三個黑球的口袋里任取兩個球,在A中,“至少有一個黑球”與“都是黑球”能同時發(fā)生,不是互斥事件,故A錯誤;在B中,“至少有一個黑球”與“至少有一個紅球”能同時發(fā)生,不是互斥事件,故B錯誤;在C中,“恰好有一個黑球”與“恰好有兩個黑球”不能同時發(fā)生,但能同時不發(fā)生,是互斥而不對立的兩個事件,故C正確;在D中,“至少有一個黑球”與“都是紅球”是對立事件,故D錯誤.故答案為:C點睛:(1)本題主要考查互斥事件和對立事件的定義,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.(2)互斥事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,對立事件指的是在一次試驗中,不可能同時發(fā)生的兩個事件,且在一次試驗中,必有一個發(fā)生的兩個事件.注意理解它們的區(qū)別和聯(lián)系.7、C【解析】

由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎(chǔ)題.8、C【解析】

因為,所以,所以=20.故選C.9、A【解析】

由等比數(shù)列的性質(zhì),仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【點睛】本題考查等比數(shù)列前n項和的性質(zhì),這道題也可以先由求出數(shù)列的首項和公比q,再由前n項和公式直接得。10、A【解析】

根據(jù)框圖有,由判斷條件即即可求出的值.【詳解】由有.根據(jù)輸出的條件是,即.所以,解得:.故選:A【點睛】本題考查程序框圖和向量的加法以及數(shù)量積以及性質(zhì),屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3.5.【解析】

根據(jù)莖葉圖,將兩組數(shù)據(jù)按照從小到大順序排列,由中位數(shù)和平均數(shù)相等,即可解得的值.【詳解】甲乙兩組數(shù)據(jù)的中位數(shù)相等,平均數(shù)也相等對于甲組將數(shù)據(jù)按照從小到大順序排列后可知,中位數(shù)為65.所以乙組中位數(shù)也為65.根據(jù)乙組數(shù)據(jù)可得則由兩組的平均數(shù)相等,可知兩組的總數(shù)也相等,即解得故答案為:;【點睛】本題考查了莖葉圖的簡單應(yīng)用,由莖葉圖求中位數(shù)和平均數(shù),屬于基礎(chǔ)題.12、4【解析】

利用對數(shù)的運算法則以及二次函數(shù)的最值化簡求解即可.【詳解】,,,則.當(dāng)且僅當(dāng)時,函數(shù)取得最大值.【點睛】本題主要考查了對數(shù)的運算法則應(yīng)用以及利用二次函數(shù)的配方法求最值.13、【解析】

利用等差數(shù)列的通項公式直接求解.【詳解】設(shè)等差數(shù)列公差為,由,得,解得.故答案:.【點睛】本題考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.14、【解析】

由函數(shù),根據(jù),得到,再由,得到,結(jié)合余弦函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),又由,即,即,因為,則,所以或,即或,所以實數(shù)的取值圍為.故答案為:.【點睛】本題主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟練應(yīng)用余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.15、1【解析】

根據(jù)等比數(shù)列的前項和公式,求得,再結(jié)合極限的運算,即可求解.【詳解】由題意,等比數(shù)列前項和公式,可得,又由,所以,所以,可得.故答案為:.【點睛】本題主要考查了等比數(shù)列的前項和公式的應(yīng)用,以及熟練的極限的計算,其中解答中根據(jù)等比數(shù)列的前項和公式,求得的值,結(jié)合極限的運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】

通過向量的垂直關(guān)系,結(jié)合向量的數(shù)量積求解向量的夾角的余弦值.【詳解】向量,滿足,,可得:,,向量的夾角為,所以.故答案為.【點睛】本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的余弦函數(shù)值的求法.考查計算能力.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)5.【解析】

(1)根據(jù)求出和的值,利用角平分線和二倍角公式求出,即可求出;(2)根據(jù)正弦定理求出,的關(guān)系,利用向量的夾角公式求出,可得,正弦定理可得答案【詳解】解:(1)由,且,,,,則;(2)由正弦定理,得,即,,又,,由上兩式解得,又由,得,解得【點睛】本題考查了二倍角公式和正弦定理的靈活運用和計算能力,是中檔題.18、(1).(2)【解析】

(1)先利用正弦定理角化邊,然后根據(jù)余弦定理求角;(2)利用余弦定理以及基本不等式求解最值,注意取等號的條件.【詳解】解:(1)由正弦定理得,由余弦定理得,∴.又∵,∴.(2)由余弦定理得,即,化簡得,,即,當(dāng)且僅當(dāng)時,取等號.∴.【點睛】在三角形中,已知一角及其對邊,求解周長或者面積的最值的方法:未給定三角形形狀時,直接利用余弦定理和基本不等式求解最值;給定三角形形狀時,先求解角的范圍,然后根據(jù)正弦定理進(jìn)行轉(zhuǎn)化求解.19、(1),減區(qū)間為;(2)【解析】

(1)利用倍角公式將函數(shù)化成的形式,再利用周期公式求出的值,并將代入?yún)^(qū)間,求出即可;(2)由求得,利用單位圓中的三角函數(shù)線,即可得答案.【詳解】(1),,;,,的單調(diào)遞減區(qū)間為.(2)由得,利用單位圓中的三角函數(shù)線可得:,∴.【點睛】本題考查三角恒等變換中倍角公式的應(yīng)用、周期公式、值域求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意角度范圍的限制.20、(I)或;(II).【解析】

(I)令,將有三個零點問題,轉(zhuǎn)化為有三個不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【詳解】(I)由題意等價于有三個不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因為,結(jié)合圖象可知,綜上可得:或.(Ⅱ)設(shè),原不就價于,兩邊同乘得:,設(shè),原題等價于的最大值.(1)當(dāng)時,,易得,(2),,易得,所以的最大值為16,即,故.【點睛】本小題主要考查根據(jù)函數(shù)零點個數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學(xué)思想,屬于難題.21、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】

(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論