2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題含解析_第1頁
2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題含解析_第2頁
2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題含解析_第3頁
2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題含解析_第4頁
2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山西省重點中學(xué)高一下數(shù)學(xué)期末預(yù)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知與之間的幾組數(shù)據(jù)如下表則與的線性回歸方程必過()A.點 B.點C.點 D.點2.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.3.下列各角中,與角終邊相同的角是()A. B. C. D.4.已知等差數(shù)列中,,,則的值為()A.51 B.34 C.64 D.5125.將一邊長為2的正方形沿對角線折起,若頂點落在同一個球面上,則該球的表面積為()A. B. C. D.6.邊長為2的正方形內(nèi)有一封閉曲線圍成的陰影區(qū)域.向正方形中隨機地撒200粒芝麻,大約有80粒落在陰影區(qū)域內(nèi),則此陰影區(qū)域的面積約為()A. B. C. D.7.P是直線x+y+2=0上任意一點,點Q在圓x-22+yA.2 B.4-2 C.4+28.已知實數(shù)滿足且,則下列選項中不一定成立的是()A. B. C. D.9.橢圓中以點M(1,2)為中點的弦所在直線斜率為()A. B. C. D.10.過點且與直線垂直的直線方程是.A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則__________.12.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________13.的內(nèi)角的對邊分別為,若,,,則的面積為__________.14.在△ABC中,若,則△ABC的形狀是____.15.已知三個頂點的坐標(biāo)分別為,若⊥,則的值是______.16.正方體中,分別是的中點,則所成的角的余弦值是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.求A;已知,的面積為的周長.18.已知定義在上的函數(shù)的圖象如圖所示(1)求函數(shù)的解析式;(2)寫出函數(shù)的單調(diào)遞增區(qū)間(3)設(shè)不相等的實數(shù),,且,求的值.19.如圖所示,是邊長為的正三角形,點四等分線段.(Ⅰ)求的值;(Ⅱ)若點是線段上一點,且,求實數(shù)的值.20.如圖所示,經(jīng)過村莊有兩條夾角為的公路,根據(jù)規(guī)劃要在兩條公路之間的區(qū)域內(nèi)修建一工廠,分別在兩條公路邊上建兩個倉庫(異于村莊),要求(單位:千米),記.(1)將用含的關(guān)系式表示出來;(2)如何設(shè)計(即為多長時),使得工廠產(chǎn)生的噪聲對居民影響最?。垂S與村莊的距離最大)?21.設(shè)遞增等差數(shù)列{an}的前n項和為Sn,已知a3=1,a4是a3和a7的等比中項,(1)求數(shù)列{an}的通項公式;(2)求數(shù)列{an}的前n項和Sn.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)線性回歸方程必過樣本中心點,即可得到結(jié)論.【詳解】,,8根據(jù)線性回歸方程必過樣本中心點,可得與的線性回歸方程必過.故選:C.【點睛】本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程必過樣本中心點,屬于基礎(chǔ)題.2、C【解析】

先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【點睛】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎(chǔ)題.3、B【解析】

給出具體角度,可以得到終邊相同角的表達式.【詳解】角終邊相同的角可以表示為,當(dāng)時,,所以答案選擇B【點睛】判斷兩角是否是終邊相同角,即判斷是否相差整數(shù)倍.4、A【解析】

根據(jù)等差數(shù)列性質(zhì);若,則即可?!驹斀狻恳驗闉榈炔顢?shù)列,所以,,所以選擇A【點睛】本題主要考查了等差數(shù)列比較重要的一個性質(zhì);在等差數(shù)列中若,則,屬于基礎(chǔ)題。5、D【解析】

令正方形對角線與的交點為,如圖所示:由正方形中,,則,那么,將正方形沿對角線折起,如圖所示:則點為三棱錐的外接球的球心,且半徑為,故外接球的表面積為.故選:D【點睛】本題考查了多面體的外接球問題以及球的表面積公式,屬于基礎(chǔ)題.6、B【解析】

依題意得,豆子落在陰影區(qū)域內(nèi)的概率等于陰影部分面積與正方形面積之比,即可求出結(jié)果.【詳解】設(shè)陰影區(qū)域的面積為,由題意可得,則.故選:B.【點睛】本題考查隨機模擬實驗,根據(jù)幾何概型的意義進行模擬實驗計算陰影部分面積,關(guān)鍵在于掌握幾何概型的計算公式.7、D【解析】

首先求出圓心到直線的距離與半徑比較大小,得到直線與圓是相離的,根據(jù)圓上的點到直線的距離的最小值等于圓心到直線的距離減半徑,求得結(jié)果.【詳解】因為圓心(2,0)到直線x+y+2=0的距離為d=2+0+2所以直線x+y+2=0與圓(x-2)2所以PQ的最小值等于圓心到直線的距離減去半徑,即PQmin故選D.【點睛】該題考查的是有關(guān)直線與圓的問題,涉及到的知識點有直線與圓的位置關(guān)系,點到直線的距離公式,圓上的點到直線的距離的最小值問題,屬于簡單題目.8、D【解析】

由題設(shè)條件可以得到,從而可判斷A,B中的不等式都是正確的,再把題設(shè)變形后可得,從而C中的不等式也是成立的,當(dāng),D中的不等式不成立,而時,它又是成立的,故可得正確選項.【詳解】因為且,故,所以,故A正確;又,故,故B正確;而,故,故C正確;當(dāng)時,,當(dāng)時,有,故不一定成立,綜上,選D.【點睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.9、A【解析】

先設(shè)出弦的兩端點的坐標(biāo),分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率.【詳解】設(shè)弦的兩端點為,,代入橢圓得,兩式相減得,即,即,即,即,∴弦所在的直線的斜率為,故選A.【點睛】本題主要考查了橢圓的性質(zhì)以及直線與橢圓的關(guān)系.在解決弦長的中點問題,涉及到“中點與斜率”時常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化,達到解決問題的目的,屬于中檔題.10、A【解析】

根據(jù)與已知直線垂直的直線系方程可假設(shè)直線為,代入點解得直線方程.【詳解】設(shè)與直線垂直的直線為:代入可得:,解得:所求直線方程為:,即本題正確選項:【點睛】本題考查利用兩條直線的垂直關(guān)系求解直線方程的問題,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

對已知等式的左右兩邊同時平方,利用同角的三角函數(shù)關(guān)系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【詳解】因為,所以,即,所以.【點睛】本題考查了同角的三角函數(shù)關(guān)系,考查了二倍角的正弦公式和余弦公式,考查了數(shù)學(xué)運算能力.12、【解析】因為圓心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.13、【解析】

由已知及正弦定理可得:,進而利用余弦定理即可求得a的值,進而可求c,利用三角形的面積公式即可求解.【詳解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案為:.【點睛】本題注意考查余弦定理與正弦定理的應(yīng)用,屬于中檔題.正弦定理主要有三種應(yīng)用:求邊和角、邊角互化、外接圓半徑.14、鈍角三角形【解析】

由,結(jié)合正弦定理可得,,由余弦定理可得可判斷的取值范圍【詳解】解:,由正弦定理可得,由余弦定理可得是鈍角三角形故答案為鈍角三角形.【點睛】本題主要考查了正弦定理、余弦定理的綜合應(yīng)用在三角形的形狀判斷中的應(yīng)用,屬于基礎(chǔ)題15、【解析】

求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標(biāo)表示、數(shù)量積運算,要注意向量坐標(biāo)與點坐標(biāo)的區(qū)別.16、【解析】

取的中點,由得出異面直線與所成的角為,然后在由余弦定理計算出,可得出結(jié)果.【詳解】取的中點,由且可得為所成的角,設(shè)正方體棱長為,中利用勾股定理可得,又,由余弦定理可得,故答案為.【點睛】本題考查異面直線所成角的計算,一般利用平移直線找出異面直線所成的角,再選擇合適的三角形,利用余弦定理或銳角三角函數(shù)來計算,考查空間想象能力與計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)在中,由正弦定理及題設(shè)條件,化簡得,即可求解.(2)由題意,根據(jù)題設(shè)條件,列出方程,求的,得到,即可求解周長.【詳解】(1)在中,由正弦定理及已知得,化簡得,,所以.(2)因為,所以,又的面積為,則,則,所以的周長為.【點睛】在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用,要抓住能夠利用某個定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.18、(1);(2);(3);【解析】

(1)根據(jù)函數(shù)的最值可得,周期可得,代入最高點的坐標(biāo)可得,從而可得解析式;(2)利用正弦函數(shù)的遞增區(qū)間可解得;(3)利用在內(nèi)的解就是和,即可得到結(jié)果.【詳解】(1)由函數(shù)的圖象可得,又因為函數(shù)的周期,所以,因為函數(shù)的圖象經(jīng)過點,即,所以,即,所以.(2)由,可得,可得函數(shù)的單調(diào)遞增區(qū)間為:,(3)因為,所以,又因為可得,所以或,解得或,、因為且,,所以.【點睛】本題考查了由圖象求解析式,考查了正弦函數(shù)的遞增區(qū)間,考查了由函數(shù)值求角,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作為基底,表示出,然后利用數(shù)量積的運算法則計算即可求出;(Ⅱ)由平面向量數(shù)量積的運算及其運算可得:設(shè),又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因為點Q是線段上一點,所以設(shè),又,所以,故,解得,因此所求實數(shù)m的值為.【點睛】本題主要考查了平面向量的線性運算以及數(shù)量積的運算以及平面向量基本定理的應(yīng)用,屬于中檔題.20、(1),;(2).【解析】

(1)根據(jù)正弦定理,得到,進而可求出結(jié)果;(2)由余弦定理,得到,結(jié)合題中數(shù)據(jù),得到,取最大值時,噪聲對居民影響最小,即可得出結(jié)果.【詳解】(1)因為,在中,由正弦定理可得:,所以,;(2)由題意,由余弦定理可得:,又由(1)可得,所以,當(dāng)且僅當(dāng),即時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論