版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省楚雄州姚安縣一中2023-2024學(xué)年高三第二次診斷性檢測數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.2.函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.3.定義域為R的偶函數(shù)滿足任意,有,且當(dāng)時,.若函數(shù)至少有三個零點,則的取值范圍是()A. B. C. D.4.設(shè)全集U=R,集合,則()A. B. C. D.5.已知向量,,若,則()A. B. C. D.6.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a7.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.8.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.9.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.610.函數(shù)的圖象大致是()A. B.C. D.11.已知集合,,則集合子集的個數(shù)為()A. B. C. D.12.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)記載,最早發(fā)現(xiàn)勾股定理的人應(yīng)是我國西周時期的數(shù)學(xué)家商高,商高曾經(jīng)和周公討論過“勾3股4弦5”的問題.現(xiàn)有滿足“勾3股4弦5”,其中“股”,為“弦”上一點(不含端點),且滿足勾股定理,則______.14.若函數(shù)()的圖象與直線相切,則______.15.在數(shù)列中,已知,則數(shù)列的的前項和為__________.16.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若,,證明:.18.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標(biāo)原點,求的取值范圍.19.(12分)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性50100女性70100合計(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機變量的數(shù)學(xué)期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.21.(12分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調(diào)性(2)求實數(shù)和a的值(3)證明22.(10分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.2、B【解析】
對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時,函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】
由題意可得的周期為,當(dāng)時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【詳解】是定義域為R的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時,,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考??嫉臒狳c問題,屬于中檔題.4、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進(jìn)行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.5、A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標(biāo)運算,屬于基礎(chǔ)題.6、C【解析】
兩復(fù)數(shù)相等,實部與虛部對應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.7、A【解析】
對復(fù)數(shù)進(jìn)行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.8、B【解析】
根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.9、C【解析】
利用導(dǎo)數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設(shè)拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計算能力.10、C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項;結(jié)合特殊值,即可排除D選項.【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項A,B;又∵當(dāng)時,,故選:C.【點睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.11、B【解析】
首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.12、B【解析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【點睛】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由等面積法求得,利用向量幾何意義求解即可.【詳解】由等面積法可得,依題意可得,,所以.故答案為:【點睛】本題考查向量的數(shù)量積,重點考查向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.14、2【解析】
設(shè)切點由已知可得,即可解得所求.【詳解】設(shè),因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.15、【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項與偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.16、4【解析】
設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設(shè)△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設(shè)四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點睛】本題考查了三棱錐的外接球問題,考查了學(xué)生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見證明【解析】
(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時,不等式可化為.當(dāng)時,,,所以;當(dāng)時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.18、(1);(2).【解析】
(1)根據(jù)焦點坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標(biāo)公式可得點的坐標(biāo),代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點滿足,則為中點,點在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內(nèi)單調(diào)遞增,所以,即所以【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線與橢圓的位置關(guān)系綜合應(yīng)用,由韋達(dá)定理研究參數(shù)間的關(guān)系,平面向量的線性運算與數(shù)量積運算,弦長公式的應(yīng)用及換元法在求取值范圍問題中的綜合應(yīng)用,計算量大,屬于難題.19、(Ⅰ)詳見解析;(Ⅱ)①;②數(shù)學(xué)期望為6,方差為2.4.【解析】
(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購的概率.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,由題意,由此能求出隨機變量的數(shù)學(xué)期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經(jīng)常網(wǎng)購偶爾或不用網(wǎng)購合計男性5050100女性7030100合計12080200由列聯(lián)表,得:,∴能在犯錯誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購的有人,偶爾或不用網(wǎng)購的有人,∴選取的3人中至少有2人經(jīng)常網(wǎng)購的概率為:.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6,由題意,∴隨機變量的數(shù)學(xué)期望,方差D(X)=.【點睛】本題考查獨立檢驗的應(yīng)用,考查概率、離散型隨機變量的分布列、數(shù)學(xué)期望、方差的求法,考查古典概型、二項分布等基礎(chǔ)知識,考查運算求解能力,是中檔題.20、(1)(?。┳C明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(ⅰ)證明:連接交于點,連接,,因為為線段的中點,所以,因為,所以因為∥所以四邊形為平行四邊形.所以又因為,所以又因為平面,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因為,,所以以為原點建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識,考查了推理能力與計算能力,屬于中檔題.21、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年餐廳主管筆試餐廳員工獎懲制度制定與執(zhí)行實務(wù)練習(xí)題及答案
- 2026年高危行業(yè)安全生產(chǎn)管理制度考核實施重難點辦法及解析
- 護(hù)肝知識科普
- 人工智能A股投資機會與風(fēng)險
- 企業(yè)網(wǎng)絡(luò)安全防護(hù)技術(shù)產(chǎn)業(yè)生態(tài)建設(shè)指南
- 2026年口腔醫(yī)療管理公司員工晉升與調(diào)崗管理制度
- 軟環(huán)境集中整治活動整改方案
- 2026年劇本殺運營公司品牌故事傳播管理制度
- 環(huán)保包裝設(shè)備生產(chǎn)項目2025年智能化環(huán)保包裝機械技術(shù)創(chuàng)新可行性分析報告
- 2026年教育行業(yè)智慧校園建設(shè)報告
- 物理(成都專用)2025年中考物理終極押題猜想(解析版)
- 電力系統(tǒng)調(diào)頻輔助服務(wù)市場交易實施細(xì)則
- 風(fēng)電、光伏項目前期及建設(shè)手續(xù)辦理流程匯編
- DB41T 1522-2018 可燃?xì)怏w和有毒氣體報警儀檢查檢測技術(shù)規(guī)范
- 內(nèi)河船舶制造行業(yè)發(fā)展前景及投資風(fēng)險預(yù)測分析報告
- QBT 1815-2002 指甲鉗行業(yè)標(biāo)準(zhǔn)
- NeuViz 16 射線計算機斷層攝影設(shè)備產(chǎn)品信息手
- 2021修訂《城市規(guī)劃設(shè)計計費指導(dǎo)意見》
- 叔叔在侄子訂婚宴致辭
- 電子地圖的基本構(gòu)成與數(shù)據(jù)類型
- 2023上海物理水平等級考+答案
評論
0/150
提交評論