黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁
黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁
黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁
黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁
黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省佳木斯市建三江第一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.2.如圖所示是正方體的平面展開圖,在這個正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°3.已知實數(shù)m,n滿足不等式組則關(guān)于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-64.某林場有樹苗30000棵,其中松樹苗4000棵.為調(diào)查樹苗的生長情況,采用分層抽樣的方法抽取一個容量為150的樣本,則樣本中松樹苗的數(shù)量為()A.30 B.25 C.20 D.155.在ΔABC中,若,則=()A.6 B.4 C.-6 D.-46.已知a,b為不同的直線,為平面,則下列命題中錯誤的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.已知,,,則b=A. B. C.2 D.38.在一段時間內(nèi),某種商品的價格(元)和銷售量(件)之間的一組數(shù)據(jù)如下表:價格(元)4681012銷售量(件)358910若與呈線性相關(guān)關(guān)系,且解得回歸直線的斜率,則的值為()A.0.2 B.-0.7 C.-0.2 D.0.79.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則圓錐的底面半徑為A. B. C. D.()10.已知實數(shù)滿足,則的最大值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線和,若,則a等于________.12.在△ABC中,若a2=b2+bc+c2,則A=________.13.在高一某班的元旦文藝晚會中,有這么一個游戲:一盒子內(nèi)裝有6張大小和形狀完全相同的卡片,每張卡片上寫有一個成語,它們分別為意氣風(fēng)發(fā)、風(fēng)平浪靜、心猿意馬、信馬由韁、氣壯山河、信口開河,從盒內(nèi)隨機(jī)抽取2張卡片,若這2張卡片上的2個成語有相同的字就中獎,則該游戲的中獎率為________.14.一圓柱的側(cè)面展開圖是長、寬分別為3、4的矩形,則此圓柱的側(cè)面積是________.15.已知l,m是平面外的兩條不同直線.給出下列三個論斷:①l⊥m;②m∥;③l⊥.以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:__________.16.不等式有解,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,內(nèi)角所對的邊分別是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面積的最大值.18.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.19.已知函數(shù)的最小正周期為,(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.20.如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點(1)求證:;(2)求四棱錐的體積;(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由21.已知數(shù)列的前項和為,且滿足(1)求數(shù)列的通項公式;(2)設(shè),令,求

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.2、C【解析】

把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補(bǔ)角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補(bǔ)角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.3、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.4、C【解析】

抽取比例為,,抽取數(shù)量為20,故選C.5、C【解析】

向量的點乘,【詳解】,選C.【點睛】向量的點乘,需要注意后面乘的是兩向量的夾角的余弦值,本題如果直接計算的話,的夾角為∠BAC的補(bǔ)角6、D【解析】

根據(jù)線面垂直與平行的性質(zhì)與判定分析或舉出反例即可.【詳解】對A,根據(jù)線線平行與線面垂直的性質(zhì)可知A正確.對B,根據(jù)線線平行與線面垂直的性質(zhì)可知B正確.對C,根據(jù)線面垂直的性質(zhì)知C正確.對D,當(dāng),時,也有可能.故D錯誤.故選:D【點睛】本題主要考查了空間中平行垂直的判定與性質(zhì),屬于中檔題.7、D【解析】

由余弦定理得,解得(舍去),故選D.【考點】余弦定理【名師點睛】本題屬于基礎(chǔ)題,考查內(nèi)容單一,根據(jù)余弦定理整理出關(guān)于b的一元二次方程,再通過解方程求b.運(yùn)算失誤是基礎(chǔ)題失分的主要原因,請考生切記!8、C【解析】

由題意利用線性回歸方程的性質(zhì)計算可得的值.【詳解】由于,,由于線性回歸方程過樣本中心點,故:,據(jù)此可得:.故選C.【點睛】本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用,屬于中等題.9、C【解析】解:10、A【解析】

由原式,明顯考查斜率的幾何意義,故上下同除以得,再畫圖分析求得的取值范圍,再用基本不等式求解即可.【詳解】所求式,上下同除以得,又的幾何意義為圓上任意一點到定點的斜率,由圖可得,當(dāng)過的直線與圓相切時取得臨界條件.當(dāng)過坐標(biāo)為時相切為一個臨界條件,另一臨界條件設(shè),化成一般式得,因為圓與直線相切,故圓心到直線的距離,所以,,解得,故.設(shè),則,又,故,當(dāng)時取等號.故,故選A.【點睛】本題主要考查斜率的幾何意義,基本不等式的用法等.注意求斜率時需要設(shè)點斜式,利用圓心到直線的距離等于半徑列式求得斜率,在用基本不等式時要注意取等號的條件.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【詳解】直線和垂直,.解得.故答案為:【點睛】本題考查了直線的一般式,根據(jù)兩直線的位置關(guān)系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關(guān)鍵,屬于基礎(chǔ)題.12、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A為△ABC的內(nèi)角,∴A=120°故答案為:120°13、【解析】

先列舉出總的基本事件,在找出其中有2個成語有相同的字的基本事件個數(shù),進(jìn)而可得中獎率.【詳解】解:先觀察成語中的相同的字,用字母來代替這些字,氣—A,風(fēng)—B,馬—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分別表示成語意氣風(fēng)發(fā)、風(fēng)平浪靜、心猿意馬、信馬由韁、氣壯山河、信口開河,則從盒內(nèi)隨機(jī)抽取2張卡片有共15個基本事件,其中有相同字的有共6個基本事件,該游戲的中獎率為,故答案為:.【點睛】本題考查古典概型的概率問題,關(guān)鍵是要將符合條件的基本事件列出,是基礎(chǔ)題.14、12【解析】

直接根據(jù)圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積的關(guān)系計算得解.【詳解】因為圓柱的側(cè)面展開圖的面積和圓柱側(cè)面積相等,所以此圓柱的側(cè)面積為.故答案為:12【點睛】本題主要考查圓柱的側(cè)面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.15、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】

將所給論斷,分別作為條件、結(jié)論加以分析.【詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.16、【解析】

由參變量分離法可得知,由二倍角的余弦公式以及二次函數(shù)的基本性質(zhì)求出函數(shù)的最小值,即可得出實數(shù)的取值范圍.【詳解】不等式有解,等價于存在實數(shù),使得關(guān)于的不等式成立,故只需.令,,由二次函數(shù)的基本性質(zhì)可知,當(dāng)時,該函數(shù)取得最小值,即,.因此,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查不等式有解的問題,涉及二倍角余弦公式以及二次函數(shù)基本性質(zhì)的應(yīng)用,一般轉(zhuǎn)化為函數(shù)的最值來求解,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)先利用向量垂直的坐標(biāo)表示,得到,再利用正弦定理以及兩角和的正弦公式將,化為,進(jìn)而得到,由此能求出.(Ⅱ)將兩邊平方,推導(dǎo)出,當(dāng)且僅當(dāng),時取等號,由此求出面積的最大值.【詳解】解析:(Ⅰ)由得,則得,即由于,得,又A為內(nèi)角,因此.(Ⅱ)將兩邊平方,即所以,當(dāng)且僅當(dāng),時取等號.此時,其最大值為.【點睛】本題主要考查數(shù)量積的坐標(biāo)表示及運(yùn)算、兩角和的正弦公式應(yīng)用、三角形面積公式的應(yīng)用以及利用基本不等式求最值.18、(1)an=3n–4,(3)Sn=n3–8n,最小值為–1.【解析】分析:(1)根據(jù)等差數(shù)列前n項和公式,求出公差,再代入等差數(shù)列通項公式得結(jié)果,(3)根據(jù)等差數(shù)列前n項和公式得的二次函數(shù)關(guān)系式,根據(jù)二次函數(shù)對稱軸以及自變量為正整數(shù)求函數(shù)最值.詳解:(1)設(shè){an}的公差為d,由題意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通項公式為an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以當(dāng)n=4時,Sn取得最小值,最小值為–1.點睛:數(shù)列是特殊的函數(shù),研究數(shù)列最值問題,可利用函數(shù)性質(zhì),但要注意其定義域為正整數(shù)集這一限制條件.19、(1)的單調(diào)遞減區(qū)間為(2)【解析】

(1)由二倍角公式和兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后得正弦函數(shù)的單調(diào)性求得減區(qū)間;(2)函數(shù)在區(qū)間上有兩個零點可轉(zhuǎn)化為函數(shù)與的圖像有兩個不同的交點.,利用函數(shù)圖象可求解.【詳解】(1)函數(shù)的最小正周期,故令,得故的單調(diào)遞減區(qū)間為(2)函數(shù)在區(qū)間上有兩個零點,即方程區(qū)間上有兩個不同的實根,即函數(shù)與的圖像有兩個不同的交點.,故,結(jié)合單調(diào)性可知,要使函數(shù)與圖像有兩個不同的交點,則,所以【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查二倍角公式和兩角和的正弦公式,考查零點個數(shù)問題.解決函數(shù)零點個數(shù)問題通常需要轉(zhuǎn)化與化歸,即轉(zhuǎn)化為函數(shù)圖象交點個數(shù)問題,大多數(shù)情況是函數(shù)圖象與直線交點個數(shù)問題.象本題,最后轉(zhuǎn)化為求函數(shù)的單調(diào)性與極值(最值).20、(1)證明見解析(2)(3)存在,【解析】

(1)證明DG⊥AE,再根據(jù)面面垂直的性質(zhì)得出DG⊥平面ABCE即可證明(2)分別計算DG和梯形ABCE的面積,即可得出棱錐的體積;(3)過點C作CF∥AE交AB于點F,過點F作FP∥AD交DB于點P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據(jù)PF∥AD計算的值.【詳解】(1)證明:因為為中點,,所以.因為平面平面,平面平面,平面,所以平面.又因為平面,故(2)在直角三角形中,易求,則所以四棱錐的體積為(3)存在點,使得平面,且=3:4過點作交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論