麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題含解析_第1頁
麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題含解析_第2頁
麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題含解析_第3頁
麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題含解析_第4頁
麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

麗水市重點中學2025屆高一下數(shù)學期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.02.若關于的方程,當時總有4個解,則可以是()A. B. C. D.3.根據(jù)下面莖葉圖提供了甲、乙兩組數(shù)據(jù),可以求出甲、乙的中位數(shù)分別為()A.24和29 B.26和29 C.26和32 D.31和294.已知為定義在上的函數(shù),其圖象關于軸對稱,當時,有,且當時,,若方程()恰有5個不同的實數(shù)解,則的取值范圍是()A. B. C. D.5.l:的斜率為A.﹣2 B.2 C. D.6.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.7.要得到函數(shù)y=sin2x-πA.向左平行移動π3個單位 B.向右平行移動πC.向右平行移動π3個單位 D.向左平行移動π8.已知函數(shù)和的定義域都是,則它們的圖像圍成的區(qū)域面積是()A. B. C. D.9.設是空間四個不同的點,在下列命題中,不正確的是A.若與共面,則與共面B.若與是異面直線,則與是異面直線C.若==,則D.若==,則=10.在△ABC中,點D在邊BC上,若,則A.+ B.+ C.+ D.+二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列,其前項和為,若,則在,,…,中,滿足的的個數(shù)為______.12._____________.13.讀程序,完成下列題目:程序如圖:(1)若執(zhí)行程序時,沒有執(zhí)行語句,則輸入的的范圍是_______;(2)若執(zhí)行結果,輸入的的值可能是___.14.方程cosx=15.若是等比數(shù)列,,,則________16.已知函數(shù).利用課本中推導等差數(shù)列的前項和的公式的方法,可求得的值為_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的定義域:(2)求函數(shù)的單調(diào)遞減區(qū)間:(3)求函數(shù)了在區(qū)間上的最大值和最小值.18.在平面直角坐標系下,已知圓O:,直線l:()與圓O相交于A,B兩點,且.(1)求直線l的方程;(2)若點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,點D滿足,點M是圓O上任意一點,點N在線段上,且存在常數(shù)使得,求點N到直線l距離的最小值.19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.

(1)求角A的值;

(2)若,,求△ABC的面積S.20.如圖1所示,在四邊形中,,且,,.(1)求的面積;(2)若,求的長.圖1圖221.已知等差數(shù)列的前項和為,,.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和;(3)在(2)的條件下,當時,比較和的大?。?/p>

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

依次求得的值,進而求得的值.【詳解】當時,;當時,,;當時,;故.故選:A.【點睛】本小題主要考查根據(jù)遞推關系式求數(shù)列每一項,屬于基礎題.2、D【解析】

根據(jù)函數(shù)的解析式,寫出與的解析式,再判斷對應方程在時解的個數(shù).【詳解】對,,,;方程,當時有4個解,當時有3個解,當時有2個解,不符合;對,,,;方程,當時有2個解,當時有3個解,當時有4個解,不符合;對,,,;方程,當時有4個解,當時有3個解,當時有2個解,不符合;對,,,;方程,當時恒有4個解,符合題意.【點睛】本題考查了函數(shù)與方程的應用問題,考查數(shù)形結合思想的運用,對綜合能力的要求較高.3、B【解析】

根據(jù)莖葉圖,將兩組數(shù)據(jù)按大小順序排列,因為是12個數(shù),所以中位數(shù)即為中間兩數(shù)的平均數(shù).【詳解】從莖葉圖知都有12個數(shù),所以中位數(shù)為中間兩個數(shù)的平均數(shù)甲中間兩個數(shù)為25,27,所以中位數(shù)是26乙中間兩個數(shù)為28,30,所以中位數(shù)是29故選:B【點睛】本題主要考查了莖葉圖和中位數(shù),平均數(shù),還考查了數(shù)據(jù)處理的能力,屬于基礎題.4、C【解析】當時,有,所以,所以函數(shù)在上是周期為的函數(shù),從而當時,,有,又,即,有易知為定義在上的偶函數(shù),所以可作出函數(shù)的圖象與直線有個不同的交點,所以,解得,故選C.點睛:本題主要考查了函數(shù)的奇偶性、周期性、對稱性,函數(shù)與方程等知識的綜合應用,著重考查了數(shù)形結合思想研究直線與函數(shù)圖象的交點問題,解答時現(xiàn)討論得到分段函數(shù)的解析式,然后做出函數(shù)的圖象,將方程恰有5個不同的實數(shù)解轉化為直線與函數(shù)的圖象由5個不同的交點,由數(shù)形結合法列出不等式組是解答的關鍵.5、B【解析】

先化成直線的斜截式方程即得直線的斜率.【詳解】由題得直線的方程為y=2x,所以直線的斜率為2.故選:B【點睛】本題主要考查直線斜率的求法,意在考查學生對該知識的理解掌握水平和分析推理能力.6、B【解析】

通過成等比數(shù)列,可以列出一個等式,根據(jù)等差數(shù)列的性質,可以把該等式變成關于的方程,解這個方程即可.【詳解】因為成等比數(shù)列,所以有,又因為是公差為2的等差數(shù)列,所以有,故本題選B.【點睛】本題考查了等比中項的性質,考查了等差數(shù)列的性質,考查了數(shù)學運算能力.7、B【解析】

把y=sin【詳解】由題得y=sin所以要得到函數(shù)y=sin2x-π3的圖象,只要將函數(shù)故選:B【點睛】本題主要考查三角函數(shù)的圖像變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.8、C【解析】

由可得,所以的圖像是以原點為圓心,為半徑的圓的上半部分;再結合圖形求解.【詳解】由可得,作出兩個函數(shù)的圖像如下:則區(qū)域①的面積等于區(qū)域②的面積,所以他們的圖像圍成的區(qū)域面積為半圓的面積,即.故選C.【點睛】本題考查函數(shù)圖形的性質,關鍵在于的識別.9、D【解析】

由空間四點共面的判斷可是A,B正確,;C,D畫出圖形,可以判定AD與BC不一定相等,證明BC與AD一定垂直.【詳解】對于選項A,若與共面,則與共面,正確;對于選項B,若與是異面直線,則四點不共面,則與是異面直線,正確;如圖,空間四邊形ABCD中,AB=AC,DB=DC,則AD與BC不一定相等,∴D錯誤;對于C,當四點共面時顯然成立,當四點不共面時,取BC的中點M,連接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正確;【點睛】本題通過命題真假的判定,考查了空間中的直線共面與異面以及垂直問題,是綜合題.10、C【解析】

根據(jù)向量減法和用表示,再根據(jù)向量加法用表示.【詳解】如圖:因為,所以,故選C.【點睛】本題考查向量幾何運算的加減法,結合圖形求解.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

運用周期公式,求得,運用誘導公式及三角恒等變換,化簡可得,即可得到滿足條件的的值.【詳解】解:,可得周期,,則滿足的的個數(shù)為.故答案為:1.【點睛】本題考查三角函數(shù)的周期性及應用,考查三角函數(shù)的化簡和求值,以及運算能力,屬于中檔題.12、【解析】,故填.13、2【解析】

(1)不執(zhí)行語句,說明不滿足條件,,從而得;(2)執(zhí)行程序,有當時,,只有,.【詳解】(1)不執(zhí)行語句,說明不滿足條件,,故有.(2)當時,,只有,.故答案為:(1)(2);【點睛】本題主要考察程序語言,考查對簡單程序語言的閱讀理解,屬于基礎題.14、x|x=2kπ±【解析】

由誘導公式可得cosx=sinπ【詳解】因為方程cosx=sinπ所以x=2kπ±π故答案為x|x=2kπ±π【點睛】本題考查解三角函數(shù)的方程,余弦函數(shù)的周期性和誘導公式的應用,屬于基礎題.15、【解析】

根據(jù)等比數(shù)列的通項公式求解公比再求和即可.【詳解】設公比為,則.故故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎題型.16、1.【解析】

由題意可知:可以計算出的值,最后求出的值.【詳解】設,,所以有,因為,因此【點睛】本題考查了數(shù)學閱讀能力、知識遷移能力,考查了倒序相加法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1).(2),.(3),.【解析】

(1)根據(jù)分母不等于求出函數(shù)的定義域.(2)化簡函數(shù)的表達式,利用正弦函數(shù)的單調(diào)減區(qū)間求解函數(shù)的單調(diào)減區(qū)間即可.(3)通過滿足求出相位的范圍,利用正弦函數(shù)的值域,求解函數(shù)的最大值和最小值.【詳解】解:(1)函數(shù)的定義域為:,即,(2),令且,解得:,即所以的單調(diào)遞減區(qū)間:,.(3)由,可得:,當,即:時,當,即:時,【點睛】本題考查三角函數(shù)的最值以及三角函數(shù)的化簡與應用,兩角和與差的三角函數(shù)的應用考查計算能力.18、(1);(2).【解析】

(1)等價于圓心O到直線l的距離,再由點到直線的距離公式求解即可;(2)先設點,再結合題意可得點N在以為圓心,半徑為的圓R上,再結合點到直線的距離公式求解即可.【詳解】解:(1)∵圓O:,圓心,半徑,∵直線l:()與圓O相交于A,B兩點,且,∴圓心O到直線l的距離,又,,解得,∴直線l的方程為;(2)∵點E,F(xiàn)分別是圓O與x軸的左、右兩個交點,,∴,,設,,則,,,,,即.又∵點N在線段上,即,共線,,,∵點M是圓O上任意一點,,∴將m,n代入上式,可得,即.則點N在以為圓心,半徑為的圓R上.圓心R到直線l:的距離,又,故點N到直線l:距離的最小值為1.【點睛】本題考查了點到直線的距離公式,重點考查了點的軌跡方程的求法,屬中檔題.19、(1)(1)【解析】試題分析:(1)由已知利用正弦定理,兩角和的正弦公式、誘導公式化簡可得,結合,可求,進而可求的值;(1)由已知及余弦定理,平方和公式可求的值,進而利用三角形面積公式即可計算得解.試題解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,

∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:

(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.20、(1);(2).【解析】

(1)利用已知條件求出D角的正弦函數(shù)值,然后求△ACD的面積;

(2)利用余弦定理求出AC,通過,利用余弦定理求解AB的長.【詳解】(1)因為,,所以,又,所以,所以.(2)由余弦定理可得,因為,所以,解得.【點睛】本題考查余弦定理以及正弦定理的應用,基本知識的考查,考查學生分析解決問題的能力,屬于中檔題.21、(1);(2);(3)【解析】

(1)設等差數(shù)列的公差為,利用等差數(shù)列的通項公式和求和公式,解方程可得首項和公差,進

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論