版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆重慶育才中學高一數(shù)學第二學期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知中,,,,那么角等于()A. B. C.或 D.2.已知,,,若,則等于()A. B. C. D.3.設(shè)等比數(shù)列的公比,前n項和為,則()A.2 B.4 C. D.4.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù)滿足下列條件:①定義域為;②當時;③.若關(guān)于x的方程恰有3個實數(shù)解,則實數(shù)k的取值范圍是A. B. C. D.6.如圖,圓O所在的平面,AB是圓O的直徑,C是圓周上一點(與A、B均不重合),則圖中直角三角形的個數(shù)是()A.1 B.2 C.3 D.47.已知數(shù)列滿足,,,則的值為()A.12 B.15 C.39 D.428.光線自點M(2,3)射到N(1,0)后被x軸反射,則反射光線所在的直線方程為()A. B.C. D.9.已知,實數(shù)、滿足關(guān)系式,若對于任意給定的,當在上變化時,的最小值為,則()A. B. C. D.10.中,下列結(jié)論:①若,則,②,③,④若是銳角三角形,則,其中正確的個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)滿足不等式組,則的最小值為_____.12.已知為鈍角,且,則__________.13.在銳角中,則的值等于.14.若則的最小值是__________.15.已知,為銳角,且,則__________.16.設(shè)為,的反函數(shù),則的值域為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在斜三棱柱中,側(cè)面是邊長為的菱形,平面,,點在底面上的射影為棱的中點,點在平面內(nèi)的射影為證明:為的中點:求三棱錐的體積18.已知數(shù)列的前項和為,對任意滿足,且,數(shù)列滿足,,其前9項和為63.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前項和為,若存在正整數(shù),有,求實數(shù)的取值范圍;(3)將數(shù)列,的項按照“當為奇數(shù)時,放在前面;當為偶數(shù)時,放在前面”的要求進行“交叉排列”,得到一個新的數(shù)列:…,求這個新數(shù)列的前項和.19.已知.(1)設(shè),求滿足的實數(shù)的值;(2)若為上的奇函數(shù),試求函數(shù)的反函數(shù).20.已知、、是銳角中、、的對邊,是的面積,若,,.(1)求;(2)求邊長的長度.21.已知⊙C經(jīng)過點、兩點,且圓心C在直線上.(1)求⊙C的方程;(2)若直線與⊙C總有公共點,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先由正弦定理求出,進而得出角,再根據(jù)大角對大邊,大邊對大角確定角.【詳解】由正弦定理得:,,∴或,∵,∴,∴,故選B.【點睛】本題主要考查正弦定理的應(yīng)用以及大邊對大角,大角對大邊的三角形邊角關(guān)系的應(yīng)用.2、A【解析】
根據(jù)向量的坐標運算法則,依據(jù)題意列出等式求解.【詳解】由題知:,,,因為,所以,故,故選:A.【點睛】本題考查向量的坐標運算,屬于基礎(chǔ)題.3、D【解析】
設(shè)首項為,利用等比數(shù)列的求和公式與通項公式求解即可.【詳解】設(shè)首項為,因為等比數(shù)列的公比,所以,故選:D.【點睛】本題主要考查等比數(shù)列的求和公式與通項公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.4、A【解析】
對分類討論,利用兩條直線相互垂直的充要條件即可得出.【詳解】由題意,當時,兩條直線分別化為:,,此時兩條直線相互垂直;當時,兩條直線分別化為:,,此時兩條直線不垂直,舍去;當且時,由兩條直線相互垂直,則,即,解得或;綜上可得:或,兩條直線相互垂直,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.【點睛】本題考查了簡易邏輯的判定方法、兩條直線相互垂直的充要條件,考查了推理能力與計算能力,屬于基礎(chǔ)題.5、D【解析】
分析:先根據(jù)條件確定函數(shù)圖像,再根據(jù)過定點(1,0)的直線與圖像關(guān)系確定實數(shù)k的取值范圍.詳解:因為,當時;所以可作函數(shù)在上圖像,如圖,而直線過定點A(1,0),根據(jù)圖像可得恰有3個實數(shù)解時實數(shù)k的取值范圍為,選D.點睛:對于方程解的個數(shù)(或函數(shù)零點個數(shù))問題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖確定其中參數(shù)范圍.從圖象的最高點、最低點,分析函數(shù)的最值、極值;從圖象的對稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性等.6、D【解析】
利用直徑所對的圓周角為直角和線面垂直的判定定理和性質(zhì)定理即可判斷出答案.【詳解】AB是圓O的直徑,則AC⊥BC,由于PA⊥平面ABC,則PA⊥BC,即有BC⊥平面PAC,則有BC⊥PC,則△PBC是直角三角形;由于PA⊥平面ABC,則PA⊥AB,PA⊥AC,則△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,則△ACB是直角三角形.綜上可知:此三棱錐P?ABC的四個面都是直角三角形.故選D.【點睛】本題考查直線與平面垂直的性質(zhì),考查垂直關(guān)系的推理與證明,屬于基礎(chǔ)題.7、B【解析】
根據(jù)等差數(shù)列的定義可得數(shù)列為等差數(shù)列,求出通項公式即可.【詳解】由題意得所以為等差數(shù)列,,,選擇B【點睛】本題主要考查了判斷是否為等差數(shù)列以及等差數(shù)列通項的求法,屬于基礎(chǔ)題.8、B【解析】試題分析:點關(guān)于軸的對稱點,則反射光線即在直線上,由,∴,故選B.考點:直線方程的幾種形式.9、A【解析】
先計算出,然后利用基本不等式可得出的值.【詳解】,由基本不等式得,當且僅當時,由于,即當時,等號成立,因此,,故選:A.【點睛】本題考查極限的計算,考查利用基本不等式求最值,解題的關(guān)鍵就是利用數(shù)列的極限計算出帶的表達式,并利用基本不等式進行計算,考查運算求解能力,屬于中等題.10、C【解析】
根據(jù)正弦定理與誘導(dǎo)公式,以及正弦函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】①在中,因為,所以,所以,故①正確;②,故②正確;③,故③錯誤;④若是銳角三角形,則,均為銳角,因為正弦函數(shù)在上單調(diào)遞增,所以,故④正確;故選C【點睛】本題主要考查命題真假的判定,熟記正弦定理,誘導(dǎo)公式等即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、-6【解析】作出可行域,如圖內(nèi)部(含邊界),作直線,當向下平移時,減小,因此當過點時,為最小值.12、.【解析】
利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】由為鈍角,且,所以,所以.故答案為:【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,同時考查了象限角的三角函數(shù)的符號,屬于基礎(chǔ)題.13、2【解析】設(shè)由正弦定理得14、【解析】
根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結(jié)果.【詳解】則,即由題意知,則,則當且僅當,即時取等號本題正確結(jié)果:【點睛】本題考查基本不等式求解和的最小值問題,關(guān)鍵是能夠利用對數(shù)相等得到的關(guān)系,從而構(gòu)造出符合基本不等式的形式.15、【解析】
由題意求得,再利用兩角和的正切公式求得的值,可得的值.【詳解】,為銳角,且,即,.再結(jié)合,則,故答案為.【點睛】本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.16、【解析】
求出原函數(shù)的值域可得出其反函數(shù)的定義域,取交集可得出函數(shù)的定義域,再由函數(shù)的單調(diào)性可求出該函數(shù)的值域.【詳解】函數(shù)在上為增函數(shù),則函數(shù)的值域為,所以,函數(shù)的定義域為.函數(shù)的定義域為,由于函數(shù)與函數(shù)單調(diào)性相同,可知,函數(shù)在上為增函數(shù).當時,函數(shù)取得最小值;當時,函數(shù)取得最大值.因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,考查函數(shù)單調(diào)性的應(yīng)用,明確兩個互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)【解析】
(1)先證平面平面,說明平面且,根據(jù)菱形的性質(zhì)即可說明為的中點.(2)根據(jù),即求出即可.【詳解】(1)證明:因為面,平面,所以平面平面;交線為過作,則平面,又是菱形,,所以為的中點(2)由題意平面【點睛】本題考查面面垂直的性質(zhì)定理,利用等體積轉(zhuǎn)換法求三棱錐的體積,屬于基礎(chǔ)題.18、(1);(2);(3)【解析】試題分析:(1)由已知得數(shù)列是等差數(shù)列,從而易得,也即得,利用求得,再求得可得數(shù)列通項,利用已知可得是等差數(shù)列,由等差數(shù)列的基本量法可求得;(2)代入得,變形后得,從而易求得和,于是有,只要求得的最大值即可得的最小值,從而得的范圍,研究的單調(diào)性可得;(3)根據(jù)新數(shù)列的構(gòu)造方法,在求新數(shù)列的前項和時,對分類:,和三類,可求解.試題解析:(1)∵,∴數(shù)列是首項為1,公差為的等差數(shù)列,∴,即,∴,又,∴.∵,∴數(shù)列是等差數(shù)列,設(shè)的前項和為,∵且,∴,∴的公差為(2)由(1)知,∴,∴設(shè),則,∴數(shù)列為遞增數(shù)列,∴,∵對任意正整數(shù),都有恒成立,∴.(3)數(shù)列的前項和,數(shù)列的前項和,①當時,;②當時,,特別地,當時,也符合上式;③當時,.綜上:考點:等差數(shù)列的通項公式,數(shù)列的單調(diào)性,數(shù)列的求和.19、(1);(2).【解析】
(1)把代入函數(shù)解析式,代入方程即可求解.(2)由函數(shù)奇偶性得,然后求得的解析式,分段求解反函數(shù)即可.【詳解】(1)當時,,由,得,即,解得.(2)為上的奇函數(shù),,則.,由,,得,;由,,得,.函數(shù)的反函數(shù)為.【點睛】本題主要考查了函數(shù)的解析式及求法,考查了反函數(shù)的求法,屬于中檔題.20、(1);(2).【解析】
(1)利用三角形的面積公式結(jié)合為銳角可求出的值;(2)利用余弦定理可求出邊長的長度.【詳解】(1)由三角形的面積公式可得,得.為銳角,因此,;(2)由余弦定理得,因此,.【點睛】本題考查利用三角形的面積公式求角,同時也考查了利用余弦定理求三角形的邊長,考查計算能力,屬于基礎(chǔ)題.21、(1)(2)【解析】試題分析:(1)解法1:由題意利用待定系數(shù)法可得⊙C方程為.解法2:由題意結(jié)合幾何關(guān)系確定圓心坐標和半徑的長度可得⊙C的方程為.(2)解法1:利用圓心到直線的距離與圓的半徑的關(guān)系得到關(guān)系k的不等式,求解不等式可得.解法2:聯(lián)立直線與圓的方程,結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年糖尿病患者足部自我護理要點解析
- 老年用藥依從性提升的教育策略
- 老年泌尿系感染政策支持與保障方案
- 免疫學基礎(chǔ):適應(yīng)性免疫檢測方法課件
- 老年數(shù)據(jù)安全技術(shù)方案
- 保衛(wèi)處權(quán)力運行流程圖解析
- 醫(yī)學人文與溝通:皮膚科銀屑病溝通課件
- 老年慢病管理APP倫理關(guān)懷條款
- 老年慢性病用藥依從性提升方案設(shè)計
- 老年慢性病管理云平臺建設(shè)方案
- 高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)光電顯示、海洋氫能分中心主任招聘2人備考題庫及答案詳解(考點梳理)
- 航空安保審計培訓(xùn)課件
- 2026四川成都錦江投資發(fā)展集團有限責任公司招聘18人備考題庫有答案詳解
- 高層建筑滅火器配置專項施工方案
- 2023-2024學年廣東深圳紅嶺中學高二(上)學段一數(shù)學試題含答案
- 2025年全國職業(yè)院校技能大賽中職組(母嬰照護賽項)考試題庫(含答案)
- 2026江蘇鹽城市阜寧縣科技成果轉(zhuǎn)化服務(wù)中心選調(diào)10人考試參考題庫及答案解析
- 托管機構(gòu)客戶投訴處理流程規(guī)范
- 2026年及未來5年中國建筑用腳手架行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報告
- 銀行客戶信息安全課件
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
評論
0/150
提交評論