版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省德州市陵城一中2025屆高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在計算機BASIC語言中,函數(shù)表示整數(shù)a被整數(shù)b除所得的余數(shù),如.用下面的程序框圖,如果輸入的,,那么輸出的結(jié)果是()A.7 B.21 C.35 D.492.甲、乙兩位同學(xué)在高一年級的5次考試中,數(shù)學(xué)成績統(tǒng)計如莖葉圖所示,若甲、乙兩人的平均成績分別是,則下列敘述正確的是()A.,乙比甲成績穩(wěn)定B.,甲比乙成績穩(wěn)定C.,乙比甲成績穩(wěn)定D.,甲比乙成績穩(wěn)定3.在集合且中任取一個元素,所取元素x恰好滿足方程的概率是()A. B. C. D.4.設(shè)且,的最小值為()A.10 B.9 C.8 D.5.定義運算為執(zhí)行如圖所示的程序框圖輸出的值,則式子的值是A.-1 B.C. D.6.下列函數(shù)中同時具有性質(zhì):①最小正周期是,②圖象關(guān)于點對稱,③在上為減函數(shù)的是()A. B.C. D.7.過點且與直線垂直的直線方程是()A. B. C. D.8.如圖,直角的斜邊長為2,,且點分別在軸,軸正半軸上滑動,點在線段的右上方.設(shè),(),記,,分別考察的所有運算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值9.函數(shù),當(dāng)時函數(shù)取得最大值,則()A. B. C. D.10.中,,則()A. B. C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.己知函數(shù),有以下結(jié)論:①的圖象關(guān)于直線軸對稱②在區(qū)間上單調(diào)遞減③的一個對稱中心是④的最大值為則上述說法正確的序號為__________(請?zhí)钌纤姓_序號).12.已知,若方程的解集為,則__________.13.已知數(shù)列{an}的前n項和Sn=2n-3,則數(shù)列{an}的通項公式為________.14.已知x,y滿足,則的最大值為________.15.已知,,若,則______16.在中,已知,,,則角__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,四邊形是邊長為的正方形,平面平面,若,分別是的中點.(1)求證:平面;(2)求證:平面平面;(3)求幾何體的體積.18.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.19.四棱錐中,底面是邊長為2的菱形,,是等邊三角形,為的中點,.(Ⅰ)求證:;(Ⅱ)若,能否在棱上找到一點,使平面平面?若存在,求的長.20.如圖,已知三棱柱的側(cè)棱垂直于底面,,,點,分別為和的中點.(1)若,求三棱柱的體積;(2)證明:平面;(3)請問當(dāng)為何值時,平面,試證明你的結(jié)論.21.已知(1)求的值;(2)求的最小值以及取得最小值時的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
模擬執(zhí)行循環(huán)體,即可得到輸出值.【詳解】,,,,繼續(xù)執(zhí)行得,,繼續(xù)執(zhí)行得,,結(jié)束循環(huán),輸出.故選:B.【點睛】本題考查循環(huán)體的執(zhí)行,屬程序框圖基礎(chǔ)題.2、C【解析】甲的平均成績,甲的成績的方差;乙的平均成績,乙的成績的方差.∴,乙比甲成績穩(wěn)定.故選C.3、B【解析】
寫出集合中的元素,分別判斷是否滿足即可得解.【詳解】集合且的元素,,,,,,.基本事件總數(shù)為,滿足方程的基本事件數(shù)為.故所求概率.故選:B.【點睛】本題考查了古典概型概率的求解,屬于基礎(chǔ)題.4、B【解析】
由配湊出符合基本不等式的形式,利用基本不等式即可求得結(jié)果.【詳解】(當(dāng)且僅當(dāng),即時取等號)的最小值為故選:【點睛】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠靈活利用“”,配湊出符合基本不等式的形式.5、D【解析】
由已知的程序框圖可知,本程序的功能是:計算并輸出分段函數(shù)的值,由此計算可得結(jié)論.【詳解】由已知的程序框圖可知:本程序的功能是:計算并輸出分段函數(shù)的值,可得,因為,所以,,故選D.【點睛】本題主要考查條件語句以及算法的應(yīng)用,屬于中檔題.算法是新課標(biāo)高考的一大熱點,其中算法的交匯性問題已成為高考的一大亮,這類問題常常與函數(shù)、數(shù)列、不等式等交匯自然,很好地考查考生的信息處理能力及綜合運用知識解決問題的能力,解決算法的交匯性問題的方:(1)讀懂程序框圖、明確交匯知識,(2)根據(jù)給出問題與程序框圖處理問題即可.6、C【解析】
根據(jù)周期公式排除A選項;根據(jù)正弦函數(shù)的單調(diào)性,排除B選項;將代入函數(shù)解析式,排除D選項;根據(jù)周期公式,將代入函數(shù)解析式,余弦函數(shù)的單調(diào)性判斷C選項正確.【詳解】對于A項,,故A錯誤;對于B項,,,函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,故B錯誤;對于C項,;當(dāng)時,,則其圖象關(guān)于點對稱;當(dāng),,函數(shù)在區(qū)間上單調(diào)遞減,則函數(shù)在區(qū)間單調(diào)遞減,故C正確;對于D項,當(dāng)時,,故D錯誤;故選:C【點睛】本題主要考查了求正余弦函數(shù)的周期,單調(diào)性以及對稱性的應(yīng)用,屬于中檔題.7、D【解析】
由已知直線方程求得直線的斜率,再根據(jù)兩直線垂直,得到所求直線的斜率,最后用點斜式寫出所求直線的方程.【詳解】已知直線的斜率為:因為兩直線垂直所以所求直線的斜率為又所求直線過點所以所求直線方程為:即:故選:D【點睛】本題主要考查了直線與直線的位置關(guān)系及直線方程的求法,還考查了運算求解的能力,屬于基礎(chǔ)題.8、B【解析】
設(shè),用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進而求得最值的情況.【詳解】依題意,所以.設(shè),則,所以,,所以,當(dāng)時,取得最大值為.,所以,所以,當(dāng)時,有最小值為.故選B.【點睛】本小題主要考查平面向量數(shù)量積的坐標(biāo)運算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.9、A【解析】
根據(jù)三角恒等變換的公式化簡得,其中,再根據(jù)題意,得到,求得,結(jié)合誘導(dǎo)公式,即可求解.【詳解】由題意,根據(jù)三角恒等變換的公式,可得,其中,因為當(dāng)時函數(shù)取得最大值,即,即,可得,即,所以.故選:A.【點睛】本題主要考查了三角恒等變換的應(yīng)用,以及誘導(dǎo)公式的化簡求值,其中解答中熟記三角恒等變換的公式,合理利用三角函數(shù)的誘導(dǎo)公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、A【解析】
根據(jù)正弦定理,可得,然后根據(jù)大邊對大角,可得結(jié)果..【詳解】由,所以由,所以故,所以故選:A【點睛】本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】
根據(jù)三角函數(shù)性質(zhì),逐一判斷選項得到答案.【詳解】,根據(jù)圖像知:①的圖象關(guān)于直線軸對稱,錯誤②在區(qū)間上單調(diào)遞減,正確③的一個對稱中心是,錯誤④的最大值為,正確故答案為②④【點睛】本題考查了三角函數(shù)的化簡,三角函數(shù)的圖像,三角函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)的綜合理解和應(yīng)用.12、【解析】
將利用輔助角公式化簡,可得出的值.【詳解】,其中,,因此,,故答案為.【點睛】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運算求解能力,屬于中等題.13、【解析】
利用來求的通項.【詳解】,化簡得到,填.【點睛】一般地,如果知道的前項和,那么我們可利用求其通項,注意驗證時,(與有關(guān)的解析式)的值是否為,如果是,則,如果不是,則用分段函數(shù)表示.14、6【解析】
作出不等式組所表示的平面區(qū)域,結(jié)合圖象確定目標(biāo)函數(shù)的最優(yōu)解,即可得到答案.【詳解】由題意,作出不等式組所表示的平面區(qū)域,如圖所示,因為目標(biāo)函數(shù),可化為直線,當(dāng)直線過點A時,此時目標(biāo)函數(shù)在軸上的截距最大,此時目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為.故答案為:6.【點睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)向量垂直的坐標(biāo)表示列出等式,求出,再利用二倍角公式、平方關(guān)系即可求出.【詳解】由得,,解得,.【點睛】本題主要考查了向量垂直的坐標(biāo)表示以及二倍角公式、平方關(guān)系的應(yīng)用.16、【解析】
先由正弦定理得到角A的大小,再由三角形內(nèi)角和為得到結(jié)果.【詳解】根據(jù)三角形正弦定理得到:,故得到或,因為故得到故答案為.【點睛】在解與三角形有關(guān)的問題時,正弦定理、余弦定理是兩個主要依據(jù).解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷一般來說,當(dāng)條件中同時出現(xiàn)及、時,往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時,往往運用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進行解答.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析(2)詳見解析(2)【解析】
試題分析:(1)如圖,連接EA交BD于F,利用正方形的性質(zhì)、三角形的中位線定理、線面平行的判定定理即可證明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是線BD與平面EBC所成的角.經(jīng)過計算即可得出.(3)利用體積公式即可得出.試題解析:(1)如圖,連接,易知為的中點.因為,分別是和的中點,所以,因為平面,平面,所以平面.(2)證明:因為四邊形為正方形,所以.又因為平面平面,所以平面.所以.又因為,所以.所以平面.從而平面平面.(3)取AB中點N,連接,因為,所以,且.又平面平面,所以平面.因為是四棱錐,所以.即幾何體的體積.點睛:本題考查了正方形的性質(zhì)、線面,面面平行垂直的判定與性質(zhì)定理、三棱錐的體積計算公式、線面角的求法,考查了推理能力與計算能力,屬于中檔題.18、(1)(2)【解析】
(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式(2),時等號成立.周長的最大值為【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,周長的最大值,意在考查學(xué)生解決問題的能力.19、(Ⅰ)見解析;(Ⅱ).【解析】
(Ⅰ)連接,根據(jù)三角形性質(zhì)可得,由底面菱形的線段角度關(guān)系可證明,即證明平面,從而證明.(Ⅱ)易證平面平面,連接交于點,過作交于,即可證明平面,在三角形【詳解】(Ⅰ)證明:連接,是等邊三角形,為的中點,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面連接交于點,過作交于,如下圖所示:所以平面,又平面所以平面平面因為,所以,即在等邊三角形中,可得在菱形中,由余弦定理可得在中,可得所以【點睛】本題考查了直線與平面垂直的判定方法,平面與平面垂直的判定及性質(zhì)的應(yīng)用,余弦定理在解三角形中的用法,屬于中檔題.20、(1)4;(2)證明見解析;(3)時,平面,證明見解析.【解析】
(1)直接根據(jù)三棱柱體積計算公式求解即可;(2)利用中位線證明面面平行,再根據(jù)面面平行的性質(zhì)定理證明平面;(3)首先設(shè)為,利用平面列出關(guān)于參數(shù)的方程求解即可.【詳解】(1)∵三棱柱的側(cè)棱垂直于底面,且,,,∴由三棱柱體積公式得:;(2)證明:取的中點,連接,,∵,分別為和的中點,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)連接,設(shè),則由題意知,,∵三棱柱的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 28171-2011嵌入式軟件可靠性測試方法》專題研究報告
- 《GB 30484-2013電池工業(yè)污染物排放標(biāo)準(zhǔn)》專題研究報告
- 《寵物鑒賞》課件-另類寵物之兩棲爬行類寵物
- Tiamo-basical-method-2參考資料說明
- 醫(yī)美機構(gòu)客戶信息安全管理協(xié)議
- 智能門鎖維修技師(高級)考試試卷及答案
- 軸承行業(yè)軸承檢測員崗位招聘考試試卷及答案
- 消防員個人述職報告2025年(3篇)
- 2025年機力通風(fēng)冷卻塔項目發(fā)展計劃
- 員工鼓勵勵志課件
- 項目經(jīng)理年底匯報
- 新生兒戒斷綜合征評分標(biāo)準(zhǔn)
- 【公開課】絕對值人教版(2024)數(shù)學(xué)七年級上冊+
- T/CI 312-2024風(fēng)力發(fā)電機組塔架主體用高強鋼焊接性評價方法
- 藥品檢驗質(zhì)量風(fēng)險管理
- 中國古橋欣賞課件
- 2025年硅酸乙酯-32#項目可行性研究報告
- 超星爾雅學(xué)習(xí)通《心理、行為與文化(北京大學(xué))》2025章節(jié)測試附答案
- 《煤礦安全生產(chǎn)責(zé)任制》培訓(xùn)課件2025
- 《臨床中藥學(xué)實訓(xùn)》課程教學(xué)大綱
- 慢性牙周炎講解
評論
0/150
提交評論