黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁
黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁
黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁
黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁
黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省齊齊哈爾市訥河市市級名校2024屆初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°2.如圖,等邊△ABC的邊長為4,點D,E分別是BC,AC的中點,動點M從點A向點B勻速運動,同時動點N沿B﹣D﹣E勻速運動,點M,N同時出發(fā)且運動速度相同,點M到點B時兩點同時停止運動,設點M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關系的圖象是()A. B.C. D.3.將二次函數(shù)的圖象先向左平移1個單位,再向下平移2個單位,所得圖象對應的函數(shù)表達式是()A. B.C. D.4.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.5.若,則x-y的正確結果是()A.-1 B.1 C.-5 D.56.關于二次函數(shù),下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側(cè)C.當時,的值隨值的增大而減小 D.的最小值為-37.計算的結果是()A. B. C. D.18.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣39.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.10.平面直角坐標系內(nèi)一點關于原點對稱點的坐標是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.小剛家、公交車站、學校在一條筆直的公路旁(小剛家、學校到這條公路的距離忽略不計).一天,小剛從家出發(fā)去上學,沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學校(上、下車時間忽略不計),小剛與學校的距離s(單位:米)與他所用的時間t(單位:分鐘)之間的函數(shù)關系如圖所示.已知小剛從家出發(fā)7分鐘時與家的距離是1200米,從上公交車到他到達學校共用10分鐘.下列說法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號是_____.12.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.13.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.14.因式分解:16a3﹣4a=_____.15.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機抽取一張,抽到中心對稱圖形的概率是________.16.計算:(π﹣3)0﹣2-1=_____.17.同時拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率是.三、解答題(共7小題,滿分69分)18.(10分)計算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.19.(5分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結果取整數(shù)).參考數(shù)據(jù):,.20.(8分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側(cè)),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.21.(10分)如圖,在平面直角坐標系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).(1)求平移后的拋物線的表達式.(2)設平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當BP與CP之和最小時,P點坐標是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標;若不存在,說明理由.22.(10分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.23.(12分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標24.(14分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關鍵.2、A【解析】

根據(jù)題意,將運動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點D到AB距離為,當0≤x≤2時,y=;當2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點睛】本題為動點問題的函數(shù)圖象,解答關鍵是找到動點到達臨界點前后的一般圖形,分類討論,求出函數(shù)關系式.3、B【解析】

拋物線平移不改變a的值,由拋物線的頂點坐標即可得出結果.【詳解】解:原拋物線的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1),

可設新拋物線的解析式為:y=(x-h)1+k,

代入得:y=(x+1)1-1.

∴所得圖象的解析式為:y=(x+1)1-1;

故選:B.【點睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關鍵是得到新拋物線的頂點坐標.4、D【解析】

根據(jù)k>0,k<0,結合兩個函數(shù)的圖象及其性質(zhì)分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.5、A【解析】由題意,得

x-2=0,1-y=0,

解得x=2,y=1.

x-y=2-1=-1,

故選:A.6、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數(shù)的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.7、D【解析】

根據(jù)同分母分式的加法法則計算可得結論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.8、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.9、C【解析】

根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點睛】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關鍵.10、D【解析】

根據(jù)“平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(-x,-y),即關于原點的對稱點,橫縱坐標都變成相反數(shù)”解答.【詳解】解:根據(jù)關于原點對稱的點的坐標的特點,∴點A(-2,3)關于原點對稱的點的坐標是(2,-3),故選D.【點睛】本題主要考查點關于原點對稱的特征,解決本題的關鍵是要熟練掌握點關于原點對稱的特征.二、填空題(共7小題,每小題3分,滿分21分)11、①②③【解析】

由公交車在7至12分鐘時間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時間,進而可知小剛上公交車的時間;由上公交車到他到達學校共用10分鐘以及公交車行駛時間可知小剛跑步時間,進而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時,公交車行駛的距離為1200-400=800m,則公交車行駛的時間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學校一共花了10-7=3分鐘<4分鐘,故④錯誤,再由圖可知小明跑步時間為300÷3=100米/分鐘,故③正確.故正確的序號是:①②③.【點睛】本題考查了一次函數(shù)的應用.12、32°【解析】

根據(jù)直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案為32°.13、36.【解析】試題分析:∵△AFE和△ADE關于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.14、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.15、【解析】

在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機抽取一張,抽到中心對稱圖形的概率為:.故答案為.16、12【解析】

分別利用零指數(shù)冪a0=1(a≠0),負指數(shù)冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點睛】本題考查了零指數(shù)冪和負整數(shù)指數(shù)冪的運算,掌握運算法則是解題關鍵.17、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結果數(shù),其中“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的結果數(shù)為9,所以“兩枚骰子的點數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點:列表法與樹狀圖法.三、解答題(共7小題,滿分69分)18、【解析】

直接利用絕對值的性質(zhì)以及特殊角的三角函數(shù)值、負整數(shù)指數(shù)冪的性質(zhì)化簡,進而求出答案.【詳解】原式.【點睛】考核知識點:三角函數(shù)混合運算.正確計算是關鍵.19、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構造直角三角形;本題涉及兩個直角三角形,應利用其公共邊構造關系式,進而可求出答案.詳解:如圖,過點作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點睛:本題考查解直角三角形的應用--仰角俯角問題,首先構造直角三角形,再借助角邊關系、三角函數(shù)的定義解題,難度一般.20、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),當y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)和等腰三角形的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式;靈活應用等腰直角三角形的性質(zhì)進行幾何計算;理解坐標與圖形性質(zhì),記住兩點間的距離公式.21、(1)y=x2+2x﹣3;(2)點P坐標為(﹣1,﹣2);(3)點M坐標為(﹣1,3)或(﹣1,2).【解析】

(1)設平移后拋物線的表達式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點C關于對稱軸的對稱點C′坐標,連接BC′,與對稱軸交點即為所求點P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點D的坐標,由點O、B、E、D的坐標可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當或時,以M、O、D為頂點的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點M的坐標.【詳解】(1)設平移后拋物線的表達式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項系數(shù)與原拋物線的二次項系數(shù)相同,∴平移后拋物線的二次項系數(shù)為1,即a=1,∴平移后拋物線的表達式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點C(0,﹣3),則點C關于直線x=﹣1的對稱點C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點即為所求點P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點P坐標為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點M只能在點D上方,∵∠BOD=∠ODM=135°,∴當或時,以M、O、D為頂點的三角形△BOD相似,①若,則,解得DM=2,此時點M坐標為(﹣1,3);②若,則,解得DM=1,此時點M坐標為(﹣1,2);綜上,點M坐標為(﹣1,3)或(﹣1,2).【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關鍵.22、(1)y=(x>0);(2)S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側(cè)時,S=t?(-3)=-3t+9與當點P2在點B的右側(cè)時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當點P1在點B的左側(cè)時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側(cè)時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關鍵是注意掌握數(shù)形結合思想、分類討論思想與方程思想的應用.23、(1),;(1),.【解析】

(1)由點A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標,再由點A的坐標利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;

(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進而求出P、Q兩點坐標.【詳解】解:(1)把點A(-1,a)代入一次函數(shù)y=x+4,

得:a=-1+4,解得:a=3,

∴點A的坐標為(-1,3).

把點A(-1,3)代入反比例函數(shù)y=,

得:k=-3,

∴反比例函數(shù)的表達式y(tǒng)=-.

聯(lián)立兩個函數(shù)關系式成方程組得:解得:或∴點B的坐標為(-3,1).

故答案為3,(-3,1);(1)作點A關于y軸的對稱點A′,作點B作關于x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論