內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷含解析_第1頁
內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷含解析_第2頁
內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷含解析_第3頁
內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷含解析_第4頁
內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古包頭市東河區(qū)2023-2024學年中考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>52.如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關于x的-元二次方程-x2+mx-t=0(t為實數(shù))在l<x<3的范圍內有解,則t的取值范圍是(

)A.-5<t≤4

B.3<t≤4

C.-5<t<3

D.t>-53.下列方程中是一元二次方程的是()A. B.C. D.4.如圖所示:有理數(shù)在數(shù)軸上的對應點,則下列式子中錯誤的是()A. B. C. D.5.△ABC在網絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.6.下列函數(shù)中,當x>0時,y值隨x值增大而減小的是()A.y=x2 B.y=x﹣1 C. D.7.若a與5互為倒數(shù),則a=()A. B.5 C.-5 D.8.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小9.如圖,△ABC繞點A順時針旋轉45°得到△AB′C′,若∠BAC=90°,AB=AC=,則圖中陰影部分的面積等于()A.2﹣ B.1 C. D.﹣l10.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為_____.12.如圖,經過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.13.如圖,直線l1∥l2,則∠1+∠2=____.14.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋15.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.16.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.三、解答題(共8題,共72分)17.(8分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調查結果繪制了如下的兩個不完整統(tǒng)計圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數(shù)為;(2)補全條形統(tǒng)計圖(3)扇形統(tǒng)計圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.18.(8分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.19.(8分)如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:≌;(2)當時,求四邊形AECF的面積.20.(8分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD、小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,然后沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,(斜坡的鉛直高度與水平寬度的比),經過測量AB=10米,AE=15米,求點B到地面的距離;求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果保留根號)21.(8分)在一個不透明的盒子里,裝有三個分別寫有數(shù)字6,-2,7的小球,它們的形狀、大小、質地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹狀圖的方法,求下列事件的概率:兩次取出小球上的數(shù)字相同;兩次取出小球上的數(shù)字之和大于1.22.(10分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.23.(12分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.24.已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.2、B【解析】

先利用拋物線的對稱軸方程求出m得到拋物線解析式為y=-x2+4x,配方得到拋物線的頂點坐標為(2,4),再計算出當x=1或3時,y=3,結合函數(shù)圖象,利用拋物線y=-x2+4x與直線y=t在1<x<3的范圍內有公共點可確定t的范圍.【詳解】∵拋物線y=-x2+mx的對稱軸為直線x=2,∴,解之:m=4,∴y=-x2+4x,當x=2時,y=-4+8=4,∴頂點坐標為(2,4),∵關于x的-元二次方程-x2+mx-t=0(t為實數(shù))在l<x<3的范圍內有解,當x=1時,y=-1+4=3,當x=2時,y=-4+8=4,∴3<t≤4,故選:B【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.3、C【解析】

找到只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為0的整式方程的選項即可.【詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【點睛】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.4、C【解析】

從數(shù)軸上可以看出a、b都是負數(shù),且a<b,由此逐項分析得出結論即可.【詳解】由數(shù)軸可知:a<b<0,A、兩數(shù)相乘,同號得正,ab>0是正確的;

B、同號相加,取相同的符號,a+b<0是正確的;

C、a<b<0,,故選項是錯誤的;

D、a-b=a+(-b)取a的符號,a-b<0是正確的.

故選:C.【點睛】此題考查有理數(shù)的混合運算,數(shù)軸,解題關鍵在于結合數(shù)軸進行解答.5、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.6、D【解析】A、、∵y=x2,∴對稱軸x=0,當圖象在對稱軸右側,y隨著x的增大而增大;而在對稱軸左側,y隨著x的增大而減小,故此選項錯誤B、k>0,y隨x增大而增大,故此選項錯誤C、B、k>0,y隨x增大而增大,故此選項錯誤D、y=(x>0),反比例函數(shù),k>0,故在第一象限內y隨x的增大而減小,故此選項正確7、A【解析】分析:當兩數(shù)的積為1時,則這兩個數(shù)互為倒數(shù),根據(jù)定義即可得出答案.詳解:根據(jù)題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數(shù)的定義,屬于基礎題型.理解倒數(shù)的定義是解題的關鍵.8、D【解析】

根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,

∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;

∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.9、D【解析】∵△ABC繞點A順時針旋轉45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴圖中陰影部分的面積等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故選D.【點睛】此題主要考查了旋轉的性質以及等腰直角三角形的性質等知識,得出AD,AF,DC′的長是解題關鍵.10、C【解析】

根據(jù)倒數(shù)的定義,分別進行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項正確;②-1和1;-1×1=-1,故此選項錯誤;③0和0;0×0=0,故此選項錯誤;④?和?1,-×(-1)=1,故此選項正確;∴互為倒數(shù)的是:①④,故選C.【點睛】此題主要考查了倒數(shù)的概念及性質.倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、(,0)【解析】試題解析:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故答案為(,0).12、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.13、30°【解析】

分別過A、B作l1的平行線AC和BD,則可知AC∥BD∥l1∥l2,再利用平行線的性質求得答案.【詳解】如圖,分別過A、B作l1的平行線AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案為30°.【點睛】本題主要考查平行線的性質和判定,掌握平行線的性質和判定是解題的關鍵,即①兩直線平行?同位角相等,②兩直線平行?內錯角相等,③兩直線平行?同旁內角互補.14、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.15、0.7【解析】

用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.16、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據(jù)△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質,等腰三角形的性質,矩形的性質等,確定出點P在線段BD上是解題的關鍵.三、解答題(共8題,共72分)17、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】

(1)根據(jù)A種類人數(shù)及其占總人數(shù)百分比可得答案;

(2)用總人數(shù)乘以B的百分比得出其人數(shù),即可補全條形圖;

(3)用360°乘以C類人數(shù)占總人數(shù)的比例可得;

(4)總人數(shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調查的學生的人數(shù)為69÷23%=300(人),

故答案為:300;

(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),

補全條形圖如下:

(3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,

故答案為:108°;

(4)∵2000×=840,

∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解題關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).18、(1);(2);【解析】

(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點睛】本題考查分式的混合運算、實數(shù)的運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,解答本題的關鍵是明確它們各自的計算方法.19、(1)見解析;(2)【解析】

(1)根據(jù)平行四邊形的性質得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根據(jù)全等三角形的判定推出即可;

(2)求出△ABE是等邊三角形,求出高AH的長,再求出面積即可.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴,,,∵點E、F分別是BC、AD的中點,∴,,∴,在和中,∴≌();(2)作于H,∵四邊形ABCD是平行四邊形,∴,,∵點E、F分別是BC、AD的中點,,∴,,∴,,∴四邊形AECF是平行四邊形,∵,∴四邊形AECF是菱形,∴,∵,∴,即是等邊三角形,,由勾股定理得:,∴四邊形AECF的面積是.【點睛】本題考查了等邊三角形的性質和判定,全等三角形的判定,平行四邊形的性質和判定等知識點,能綜合運用定理進行推理是解此題的關鍵.20、(1)2;(2)宣傳牌CD高(20﹣1)m.【解析】試題分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到結果BH=ABsin∠BAH=1sin30°=1×=2;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如圖,過點B作BF⊥CE,垂足為F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得結果.試題解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.答:點B距水平面AE的高度BH是2米;(2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如圖,過點B作BF⊥CE,垂足為F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:廣告牌CD的高度約為(20﹣1)米.21、(1);(2).【解析】

根據(jù)列表法或樹狀圖看出所有可能出現(xiàn)的結果共有多少種,再求出兩次取出小球上的數(shù)字相同的結果有多少種,根據(jù)概率公式求出該事件的概率.【詳解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(兩數(shù)相同)=.(2)P(兩數(shù)和大于1)=.【點睛】本題考查了利用列表法、畫樹狀圖法求等可能事件的概率.22、見解析【解析】

(1)由菱形的性質得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質,解題的關鍵是熟練的掌握菱形、正方形、全等三角形的性質.23、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當OB=AB時,內心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答如圖2,當OB=OA時,內心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設BH=x,列出方程求解即可解答【詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論