寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第1頁
寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第2頁
寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第3頁
寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第4頁
寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

寧夏石嘴山市平羅四中學(xué)2024年中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.122.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點(diǎn)在AD上,CD與QR相交于S點(diǎn),則四邊形RBCS的面積為()A.8 B. C. D.3.如圖所示的幾何體,它的左視圖是()A. B. C. D.4.小紅上學(xué)要經(jīng)過三個(gè)十字路口,每個(gè)路口遇到紅、綠燈的機(jī)會(huì)都相同,小紅希望小學(xué)時(shí)經(jīng)過每個(gè)路口都是綠燈,但實(shí)際這樣的機(jī)會(huì)是()A. B. C. D.5.如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的全面積是()A.15π B.24π C.20π D.10π6.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.7.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設(shè)半徑為xcm,當(dāng)x=3時(shí),y=18,那么當(dāng)半徑為6cm時(shí),成本為()A.18元 B.36元 C.54元 D.72元8.已知實(shí)數(shù)a、b滿足,則A. B. C. D.9.下列計(jì)算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b210.某校今年共畢業(yè)生297人,其中女生人數(shù)為男生人數(shù)的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人二、填空題(共7小題,每小題3分,滿分21分)11.關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則的值等于_____.12.不等式組的解集為________.13.在直角三角形ABC中,∠C=90°,已知sinA=3514.如果點(diǎn)、是二次函數(shù)是常數(shù)圖象上的兩點(diǎn),那么______填“”、“”或“”15.函數(shù)y=1x-1的自變量x的取值范圍是16.如果關(guān)于x的方程x2+kx+34k2-3k+17.如圖,AE是正八邊形ABCDEFGH的一條對角線,則∠BAE=°.三、解答題(共7小題,滿分69分)18.(10分)某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.19.(5分)如圖,在方格紙中.(1)請?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使,,并求出點(diǎn)坐標(biāo);(2)以原點(diǎn)為位似中心,相似比為2,在第一象限內(nèi)將放大,畫出放大后的圖形;(3)計(jì)算的面積.20.(8分)已知,如圖,是的平分線,,點(diǎn)在上,,,垂足分別是、.試說明:.21.(10分)如圖,某校準(zhǔn)備給長12米,寬8米的矩形室內(nèi)場地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個(gè)全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點(diǎn)為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.甲乙丙單價(jià)(元/米2)(1)當(dāng)時(shí),求區(qū)域Ⅱ的面積.計(jì)劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,①在相同光照條件下,當(dāng)場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時(shí),室內(nèi)光線亮度最好,并求此時(shí)白色區(qū)域的面積.②三種瓷磚的單價(jià)列表如下,均為正整數(shù),若當(dāng)米時(shí),購買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時(shí)__________,__________.22.(10分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;(2)求一次打開鎖的概率.23.(12分)鄂州某個(gè)體商戶購進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣出160個(gè),若銷售單價(jià)每個(gè)降低2元,則每周可多賣出20個(gè).設(shè)銷售價(jià)格每個(gè)降低x元(x為偶數(shù)),每周銷售為y個(gè).(1)直接寫出銷售量y個(gè)與降價(jià)x元之間的函數(shù)關(guān)系式;(2)設(shè)商戶每周獲得的利潤為W元,當(dāng)銷售單價(jià)定為多少元時(shí),每周銷售利潤最大,最大利潤是多少元?(3)若商戶計(jì)劃下周利潤不低于5200元的情況下,他至少要準(zhǔn)備多少元進(jìn)貨成本?24.(14分)某電視臺(tái)的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.2、D【解析】

根據(jù)正方形的邊長,根據(jù)勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據(jù)面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的性質(zhì)和判定,能求出△ABR和△RDS的面積是解此題的關(guān)鍵.3、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個(gè)矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點(diǎn)睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.4、B【解析】分析:列舉出所有情況,看各路口都是綠燈的情況占總情況的多少即可.詳解:畫樹狀圖,得∴共有8種情況,經(jīng)過每個(gè)路口都是綠燈的有一種,∴實(shí)際這樣的機(jī)會(huì)是.故選B.點(diǎn)睛:此題考查了樹狀圖法求概率,樹狀圖法適用于三步或三步以上完成的事件,解題時(shí)要注意列出所有的情形.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、B【解析】解:根據(jù)三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側(cè)面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點(diǎn)睛:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.6、C【解析】

根據(jù)平行線分線段成比例定理找準(zhǔn)線段的對應(yīng)關(guān)系,對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項(xiàng)A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項(xiàng)B不正確;∵EF∥AB,∴=,選項(xiàng)C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項(xiàng)D不正確;故選C.【點(diǎn)睛】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時(shí)尋找對應(yīng)線段是關(guān)?。?、D【解析】

設(shè)y與x之間的函數(shù)關(guān)系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時(shí)y的值即可得.【詳解】解:根據(jù)題意設(shè)y=kπx2,∵當(dāng)x=3時(shí),y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當(dāng)x=6時(shí),y=2×36=72,故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解答時(shí)求出函數(shù)的解析式是關(guān)鍵.8、C【解析】

根據(jù)不等式的性質(zhì)進(jìn)行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項(xiàng)錯(cuò)誤;

B、,但不一定成立,例如:,,故本選項(xiàng)錯(cuò)誤;

C、時(shí),成立,故本選項(xiàng)正確;

D、時(shí),成立,則不一定成立,故本選項(xiàng)錯(cuò)誤;

故選C.【點(diǎn)睛】考查了不等式的性質(zhì)要認(rèn)真弄清不等式的基本性質(zhì)與等式的基本性質(zhì)的異同,特別是在不等式兩邊同乘以或除以同一個(gè)數(shù)時(shí),不僅要考慮這個(gè)數(shù)不等于0,而且必須先確定這個(gè)數(shù)是正數(shù)還是負(fù)數(shù),如果是負(fù)數(shù),不等號(hào)的方向必須改變.9、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D10、B【解析】

設(shè)男生為x人,則女生有65%x人,根據(jù)今年共畢業(yè)生297人列方程求解即可.【詳解】設(shè)男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用,根據(jù)題意找出等量關(guān)系列出方程是解答本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結(jié)果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè),相等的實(shí)數(shù)根,也考查了一元二次方程的定義.12、x>1【解析】

分別求出兩個(gè)不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式組的解集為:x>1,故答案為:x>1.【點(diǎn)睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.13、35【解析】試題分析:解答此題要利用互余角的三角函數(shù)間的關(guān)系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點(diǎn):互余兩角三角函數(shù)的關(guān)系.14、【解析】

根據(jù)二次函數(shù)解析式可知函數(shù)圖象對稱軸是x=0,且開口向上,分析可知兩點(diǎn)均在對稱軸左側(cè)的圖象上;接下來,結(jié)合二次函數(shù)的性質(zhì)可判斷對稱軸左側(cè)圖象的增減性,【詳解】解:二次函數(shù)的函數(shù)圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側(cè)y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點(diǎn)睛】本題考查了二次函數(shù)的圖像和數(shù)形結(jié)合的數(shù)學(xué)思想.15、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>116、-【解析】

由方程有兩個(gè)實(shí)數(shù)根,得到根的判別式的值大于等于0,列出關(guān)于k的不等式,利用非負(fù)數(shù)的性質(zhì)得到k的值,確定出方程,求出方程的解,代入所求式子中計(jì)算即可求出值.【詳解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32則x12017x故答案為-23【點(diǎn)睛】此題考查了根的判別式,非負(fù)數(shù)的性質(zhì),以及配方法的應(yīng)用,求出k的值是本題的突破點(diǎn).17、67.1【解析】試題分析:∵圖中是正八邊形,∴各內(nèi)角度數(shù)和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點(diǎn):多邊形的內(nèi)角三、解答題(共7小題,滿分69分)18、解:(1)10,50;(2)解法一(樹狀圖):從上圖可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)=;解法二(列表法):(以下過程同“解法一”)【解析】

試題分析:(1)由在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0”元,“10”元,“20”元和“30”元的字樣,規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以再箱子里先后摸出兩個(gè)球(第一次摸出后不放回).即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與顧客所獲得購物券的金額不低于30元的情況,再利用概率公式求解即可求得答案.試題解析:(1)10,50;(2)解法一(樹狀圖):,從上圖可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)==;解法二(列表法):

0

10

20

30

0

﹣﹣

10

20

30

10

10

﹣﹣

30

40

20

20

30

﹣﹣

50

30

30

40

50

﹣﹣

從上表可以看出,共有12種可能結(jié)果,其中大于或等于30元共有8種可能結(jié)果,因此P(不低于30元)==;考點(diǎn):列表法與樹狀圖法.【詳解】請?jiān)诖溯斎朐斀猓?9、(1)作圖見解析;.(2)作圖見解析;(3)1.【解析】分析:(1)直接利用A,C點(diǎn)坐標(biāo)得出原點(diǎn)位置進(jìn)而得出答案;(2)利用位似圖形的性質(zhì)即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標(biāo)系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點(diǎn)睛:此題主要考查了位似變換以及三角形面積求法,正確得出對應(yīng)點(diǎn)位置是解題的關(guān)鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和關(guān)鍵點(diǎn);③根據(jù)位似比,確定位似圖形的關(guān)鍵點(diǎn);④順次連接上述各點(diǎn),得到放大或縮小的圖形.20、見詳解【解析】

根據(jù)角平分線的定義可得∠ABD=∠CBD,然后利用“邊角邊”證明△ABD和△CBD全等,根據(jù)全等三角形對應(yīng)角相等可得∠ADB=∠CDB,然后根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等證明即可.【詳解】證明:∵BD為∠ABC的平分線,

∴∠ABD=∠CBD,

在△ABD和△CBD中,∴△ABD≌△CBD(SAS),

∴∠ADB=∠CDB,

∵點(diǎn)P在BD上,PM⊥AD,PN⊥CD,

∴PM=PN.【點(diǎn)睛】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),全等三角形的判定與性質(zhì),確定出全等三角形并得到∠ADB=∠CDB是解題的關(guān)鍵.21、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據(jù)中心對稱圖形性質(zhì)和,,,可得,即可解當(dāng)時(shí),4個(gè)全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個(gè)全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點(diǎn)式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計(jì)算出x=2時(shí)各部分面積以及用含m、n的代數(shù)式表示出費(fèi)用,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當(dāng)時(shí),,(2)∵,∴-,∵,,∴解不等式組得,∵,結(jié)合圖像,當(dāng)時(shí),隨的增大而減小.∴當(dāng)時(shí),取得最大值為(3)∵當(dāng)時(shí),SⅠ=4x2=16m2,=12m2,=68m2,總費(fèi)用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【點(diǎn)睛】本題考查中心對稱圖形性質(zhì),菱形、直角三角形的面積計(jì)算,二次函數(shù)的最值問題,解題關(guān)鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.22、(1)詳見解析(2)【解析】

設(shè)兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出樹形圖,再根據(jù)概率公式求解即可.【詳解】(1)設(shè)兩把不同的鎖分別為A、B,能把兩鎖打開的鑰匙分別為、,其余兩把鑰匙分別為、,根據(jù)題意,可以畫出如下樹形圖:由上圖可知,上述試驗(yàn)共有8種等可能結(jié)果;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論