廣西全州縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末經(jīng)典試題含解析_第1頁
廣西全州縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末經(jīng)典試題含解析_第2頁
廣西全州縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末經(jīng)典試題含解析_第3頁
廣西全州縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末經(jīng)典試題含解析_第4頁
廣西全州縣二中2022-2023學(xué)年數(shù)學(xué)高三上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)等差數(shù)列的前項和為,若,則()A.10 B.9 C.8 D.72.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.73.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.4.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612425.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機(jī)取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.6.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.7.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.8.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或89.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:10.復(fù)數(shù)為純虛數(shù),則()A.i B.﹣2i C.2i D.﹣i11.若雙曲線:的一條漸近線方程為,則()A. B. C. D.12.下列四個圖象可能是函數(shù)圖象的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),滿足約束條件,若目標(biāo)函數(shù)的最大值為,則的最小值為______.14.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.15.已知,,且,則的最小值是______.16.設(shè)集合,(其中e是自然對數(shù)的底數(shù)),且,則滿足條件的實數(shù)a的個數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.18.(12分)已知函數(shù),函數(shù)在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對于函數(shù)圖象上的不同兩點,,如果在函數(shù)圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說明理由.19.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.20.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:21.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.22.(10分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計算能力.2、B【解析】

根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.3、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.4、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。5、D【解析】

由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.6、D【解析】

根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計算是解決本題的關(guān)鍵.7、D【解析】

設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.8、B【解析】

根據(jù)函數(shù)的對稱軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對稱性問題,屬基礎(chǔ)題9、C【解析】

根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.10、B【解析】

復(fù)數(shù)為純虛數(shù),則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數(shù),∴,解得..故選:.【點睛】本題考查復(fù)數(shù)的分類,屬于基礎(chǔ)題.11、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.12、C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數(shù),即可得到函數(shù)圖象關(guān)于對稱,即可排除A、D,再根據(jù)時函數(shù)值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數(shù),圖象關(guān)于原點對稱,∴的圖象關(guān)于點成中心對稱.可排除A、D項.當(dāng)時,,∴B項不正確.故選:C【點睛】本題考查函數(shù)的性質(zhì)與識圖能力,一般根據(jù)四個選擇項來判斷對應(yīng)的函數(shù)性質(zhì),即可排除三個不符的選項,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當(dāng)直線過直線與直線的交點時,目標(biāo)函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.14、【解析】

設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.15、1【解析】

先將前兩項利用基本不等式去掉,,再處理只含的算式即可.【詳解】解:,因為,所以,所以,當(dāng)且僅當(dāng),,時等號成立,故答案為:1.【點睛】本題主要考查基本不等式的應(yīng)用,但是由于有3個變量,導(dǎo)致該題不易找到思路,屬于中檔題.16、【解析】

可看出,這樣根據(jù)即可得出,從而得出滿足條件的實數(shù)的個數(shù)為1.【詳解】解:,或,在同一平面直角坐標(biāo)系中畫出函數(shù)與的圖象,由圖可知與無交點,無解,則滿足條件的實數(shù)的個數(shù)為.故答案為:.【點睛】考查列舉法的定義,交集的定義及運算,以及知道方程無解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)66.5(2)屬于【解析】

(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.18、(1),單調(diào)性見解析;(2)不存在,理由見解析【解析】

(1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導(dǎo)后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域為且,由,整理得..(?。┊?dāng)時,易知,,時.故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當(dāng)時,令,解得或,則①當(dāng),即時,在上恒成立,則在上遞增.②當(dāng),即時,當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當(dāng),即時,當(dāng)時,;當(dāng)時,.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當(dāng)時,在上單調(diào)遞增,在單調(diào)遞減.當(dāng)時,在及上單調(diào)遞增;在上單調(diào)遞減.當(dāng)時,在上遞增.當(dāng)時,在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計算能力和轉(zhuǎn)化化歸思想,屬于中檔題.19、(1),;(2)【解析】

(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進(jìn)行求導(dǎo),,通過導(dǎo)數(shù)求出,若,則恒成立不符合題意,當(dāng),可證明,此時時有極小值.(2)可知,進(jìn)而得到,令,通過導(dǎo)數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當(dāng)時,;當(dāng)時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構(gòu)造函數(shù),所以,當(dāng)時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設(shè),可得當(dāng)時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.20、(1)(2)見解析【解析】

(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當(dāng)且僅當(dāng)即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當(dāng)且僅當(dāng)時等號成立,即,所以.法2:由得,,當(dāng)且僅當(dāng)時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.21、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論