版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省深圳市福田區(qū)北環(huán)中學數(shù)學九上期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.如圖,在Rt△ABC中,∠BAC=90°,將Rt△ABC繞點C按逆時針方向旋轉46°得到Rt△A′B′C,點A在邊B′C上,則∠ACB的大小為()A.23° B.44° C.46° D.54°2.若關于的一元二次方程有實數(shù)根,則的取值范圍()A. B. C.且 D.且3.下列說法正確的是()A.“經(jīng)過有交通信號的路口遇到紅燈”是必然事件B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次C.投擲一枚硬幣正面朝上是隨機事件D.明天太陽從東方升起是隨機事件4.拋物線y=(x-3)2+4的頂點坐標是()A.(-1,2)B.(-1,-2)C.(1,-2)D.(3,4)5.已知反比例函數(shù)的圖象經(jīng)過點,則的值是()A. B. C. D.6.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結果的實驗可能是()A.擲一枚正六面體的骰子,出現(xiàn)1點的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數(shù),它能被2整除的概率7.如圖,將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,連接AA',若∠1=20°,則∠B的度數(shù)是()A.70° B.65° C.60° D.55°8.已知,則下列比例式成立的是()A. B. C. D.9.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.610.如圖,AB是⊙O的直徑,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34° B.46° C.56° D.66°11.已知圓與點在同一平面內,如果圓的半徑為5,線段的長為4,則點()A.在圓上 B.在圓內 C.在圓外 D.在圓上或在圓內12.如圖,△ABC中,D是AB的中點,DE∥BC,連接BE.若AE=6,DE=5,∠BEC=90°,則△BCE的周長是()A.12 B.24 C.36 D.48二、填空題(每題4分,共24分)13.正五邊形的每個內角為______度.14.若⊙O的直徑是4,圓心O到直線l的距離為3,則直線l與⊙O的位置關系是_________.15.從一副撲克牌中的13張黑桃牌中隨機抽取一張,它是王牌的概率為____.16.如圖,在平面直角坐標系中,直角三角形的直角頂點與原點O重合,頂點A,B恰好分別落在函數(shù),的圖象上,則tan∠ABO的值為___________17.某校九年1班共有45位學生,其中男生有25人,現(xiàn)從中任選一位學生,選中女生的概率是____.18.計算:__________.三、解答題(共78分)19.(8分)如圖1,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖2,若點E和點A在BC的兩側,BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結論還成立嗎?請說明理由;(3)在(2)的條件下,若BG=26,BD﹣DF=7,求AB的長.20.(8分)已知二次函數(shù)y=2x2+4x+3,當﹣2≤x≤﹣1時,求函數(shù)y的最小值和最大值,如圖是小明同學的解答過程.你認為他做得正確嗎?如果正確,請說明解答依據(jù),如果不正確,請寫出你得解答過程.21.(8分)近日,國產(chǎn)航母山東艦成為了新晉網(wǎng)紅,作為我國本世紀建造的第一艘真正意義上的國產(chǎn)航母,承載了我們太多期盼,促使我國在偉大復興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發(fā)現(xiàn)在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經(jīng)測量得出:可疑船只在P處南偏東45°方向,距P處海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結果精確到0.1海里)22.(10分)矩形的長和寬分別是4cm,3cm,如果將長和寬都增加xcm,那么面積增加ycm2(1)求y與x之間的關系式.(2)求當邊長增加多少時,面積增加8cm2.23.(10分)如圖,拋物線y=ax2+bx+c經(jīng)過△ABC的三個頂點,與y軸相交于(0,),點A坐標為(-1,2),點B是點A關于y軸的對稱點,點C在x軸的正半軸上.(1)求該拋物線的函數(shù)解析式;(2)點F為線段AC上一動點,過點F作FE⊥x軸,F(xiàn)G⊥y軸,垂足分別為點E,G,當四邊形OEFG為正方形時,求出點F的坐標;(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當點E和點C重合時停止運動,設平移的距離為t,正方形的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.24.(10分)如圖,反比例函數(shù)y1=與一次函數(shù)y2=ax+b的圖象交于點A(﹣2,5)和點B(n,l).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)請結合圖象直接寫出當y1≥y2時自變量x的取值范圍;(3)點P是y軸上的一個動點,若S△APB=8,求點P的坐標.25.(12分)如圖,已知、兩點的坐標分別為,,直線與反比例函數(shù)的圖象相交于點和點.(1)求直線與反比例函數(shù)的解析式;(2)求的度數(shù);(3)將繞點順時針方向旋轉角(為銳角),得到,當為多少度時,并求此時線段的長度.26.如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,(1)求拋物線的解析式;(2)設點P的橫坐標為m,當線段PE的長取最大值時,解答以下問題.①求此時m的值.②設Q是平面直角坐標系內一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)題意:Rt△ABC繞點C按逆時針方向旋轉46°得到Rt△A′B′C,即旋轉角為46°,則∠ACB=46°即可得解.【詳解】由旋轉得:∠ACA′=∠ACB=46°,故選:C.【點睛】本題考查了旋轉,比較簡單,明確旋轉角的概念并能找到旋轉角是關鍵.2、D【分析】根據(jù)一元二次方程的定義和根的判別式得出且,求出即可.【詳解】∵關于的一元二次方程有實數(shù)根,
∴且,
解得:1且,
故選:D.【點睛】本題考查了一元二次方程的定義和根的判別式,能得出關于的不等式是解此題的關鍵.3、C【解析】試題解析:A.“經(jīng)過有交通信號的路口遇到紅燈”是隨機事件,說法錯誤.B.已知某籃球運動員投籃投中的概率為0.6,則他投10次一定可投中6次,說法錯誤.C.投擲一枚硬幣正面朝上是隨機事件,說法正確.D.明天太陽從東方升起是必然事件.說法錯誤.故選C.4、D【解析】根據(jù)拋物線解析式y(tǒng)=(x-3)2+4,可直接寫出頂點坐標.【詳解】y=(x-3)2+4的頂點坐標是(3,4).故選D.【點睛】此題考查了二次函數(shù)y=a(x-h)2+k的性質,對于二次函數(shù)y=a(x-h)2+k,頂點坐標是(h,k),對稱軸是x=k.5、A【分析】把代入反比例函數(shù)的解析式即可求解.【詳解】把代入得:k=-4故選:A【點睛】本題考查的是求反比例函數(shù)的解析式,掌握反比例函數(shù)的圖象和性質是關鍵.6、C【解析】解:A.擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤.故選C.7、B【分析】根據(jù)圖形旋轉的性質得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,從而得∠AA′C=45°,結合∠1=20°,即可求解.【詳解】∵將RtABC繞直角項點C順時針旋轉90°,得到A'B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故選B.【點睛】本題主要考查旋轉的性質,等腰三角形和直角三角形的性質,掌握等腰三角形和直角三角形的性質定理,是解題的關鍵.8、C【分析】依據(jù)比例的性質,將各選項變形即可得到正確結論.【詳解】解:A.由可得,2y=3x,不合題意;B.由可得,2y=3x,不合題意;C.由可得,3y=2x,符合題意;D.由可得,3x=2y,不合題意;故選:C.【點睛】本題主要考查了比例的性質,解決問題的關鍵是掌握:內項之積等于外項之積.9、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據(jù)全等三角形的性質可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質;矩形的性質;勾股定理;銳角三角函數(shù).10、C【解析】由AB是⊙O的直徑,根據(jù)直徑所對的圓周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度數(shù),再根據(jù)直角三角形的性質求出答案.【詳解】解:∵AB是⊙O的直徑,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故選:C.【點睛】此題考查了圓周角定理以及直角三角形的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.11、B【分析】由題意根據(jù)圓的半徑和線段的長進行大小比較,即可得出選項.【詳解】解:因為圓的半徑為5,線段的長為4,5>4,所以點在圓內.故選B.【點睛】本題考查同一平面內點與圓的位置關系,根據(jù)相關判斷方法進行大小比較即可.12、B【解析】試題解析:△ABC中,D是AB的中點,DE∥BC,是的中點,∠BEC=90°,△BCE的周長故選B.點睛:三角形的中位線平行于第三邊而且等于第三邊的一半.二、填空題(每題4分,共24分)13、1【分析】先求出正五邊形的內角和,再根據(jù)正五邊形的每個內角都相等,進而求出其中一個內角的度數(shù).【詳解】解:正五邊形的內角和是:(5﹣2)×180°=540°,則每個內角是:540÷5=1°.故答案為:1.【點睛】本題主要考查多邊形的內角和計算公式,以及正多邊形的每個內角都相等等知識點.14、相離【解析】r=2,d=3,則直線l與⊙O的位置關系是相離15、1【分析】根據(jù)是王牌的張數(shù)為1可得出結論.【詳解】∵13張牌全是黑桃,王牌是1張,∴抽到王牌的概率是1÷13=1,故答案為:1.【點睛】本題考查了概率的公式計算,熟記概率=所求情況數(shù)與總情況數(shù)之比是解題的關鍵.16、【分析】根據(jù)反比例函數(shù)的幾何意義可得直角三角形的面積;根據(jù)題意可得兩個直角三角形相似,而相似比就是直角三角形?AOB的兩條直角邊的比,從而得出答案.【詳解】過點A、B分別作AD⊥x軸,BE⊥x軸,垂足為D、E,∵頂點A,B恰好分別落在函數(shù),的圖象上∴又∵∠AOB=90°∴∠AOD=∠OBE∴∴則tan∠ABO=故本題答案為:.【點睛】本題考查了反比例函數(shù),相似三角形和三角函數(shù)的綜合題型,連接輔助線是解題的關鍵.17、【詳解】解:選中女生的概率是:.18、【分析】先計算根號、負指數(shù)和sin30°,再運用實數(shù)的加減法運算法則計算即可得出答案.【詳解】原式=,故答案為.【點睛】本題考查的是實數(shù)的運算,中考必考題型,需要熟練掌握實數(shù)的運算法則.三、解答題(共78分)19、(1)等腰三角形,理由見解析;(2)成立,理由見解析;(3).【分析】(1)首先根據(jù)圓周角定理及垂直的定義得到,,從而得到,然后利用等弧對等角、等角對等邊等知識得到,從而證得,判定等腰三角形;(2)成立,證明方法同(1);(3)首先根據(jù)上題得到,從而利用已知條件得到,然后利用勾股定理得到,,從而求得,最后求得【詳解】解:(1)結論:△FAG是等腰三角形;理由:如圖1,為直徑,,,,,,,,,,,,,是等腰三角形;(2)(1)中的結論成立;為直徑,,,,,,,,,,,,,是等腰三角形;(3)由(2)得:,,,解得:,,,.【點睛】此題是圓的綜合題,主要考查了圓周角定理,垂徑定理、勾股定理,等腰三角形的判定和性質,解本題的關鍵是判斷出是等腰三角形,是一道難度不大的三角形和圓的結合的題目.20、錯誤,見解析【分析】根據(jù)二次函數(shù)的性質和小明的做法,可以判斷小明的做法是否正確,然后根據(jù)二次函數(shù)的性質即可解答本題.【詳解】解:小明的做法是錯誤的,正確的做法如下:∵二次函數(shù)y=2x2+4x+1=2(x+1)2+1,∴該函數(shù)圖象開口向上,該函數(shù)的對稱軸是直線x=﹣1,當x=﹣1時取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴當x=﹣2時取得最大值,此時y=1,當x=﹣1時取得最小值,最小值是y=1,由上可得,當﹣2≤x≤﹣1時,函數(shù)y的最小值是1,最大值是1.【點睛】本題考查二次函數(shù)的性質,關鍵在于熟記性質.21、被攔截時,可疑船只距海島A還有57.7海里.【分析】過點P作于點D,在中,利用等腰直角三角形性質求出PD的長,在中,求出PC的長,再求的.可得.【詳解】解:過點P作于點D由題意可知,在中,∴在中,∴又∴∴∴(海里)即被攔截時,可疑船只距海島A還有57.7海里.【點睛】此題考查了解直角三角形的應用,熟練掌握直角三角形中三角函數(shù)的運用是解題的關鍵.22、(1)y=(4+x)(3+x)-12=x2+7x;(2)邊長增加1cm時,面積增加8cm2.【分析】(1)根據(jù)題意,借助于矩形面積,直接解答;(2)在(1)中,把y=8代入即可解答.【詳解】解:(1)由題意可得:(4+x)(3+x)-3×4=y,化簡得:y=x2+7x;(2)把y=8代入解析式y(tǒng)=x2+7x中得:x2+7x-8=0,解之得:x1=1,x2=-8(舍去).∴當邊長增加1cm時,面積增加8cm223、(1)y=﹣x2+;(2)(1,1);(3)當△DMN是等腰三角形時,t的值為,3﹣或1.【解析】試題分析:(1)易得拋物線的頂點為(0,),然后只需運用待定系數(shù)法,就可求出拋物線的函數(shù)關系表達式;(2)①當點F在第一象限時,如圖1,可求出點C的坐標,直線AC的解析式,設正方形OEFG的邊長為p,則F(p,p),代入直線AC的解析式,就可求出點F的坐標;②當點F在第二象限時,同理可求出點F的坐標,此時點F不在線段AC上,故舍去;(3)過點M作MH⊥DN于H,如圖2,由題可得0≤t≤2.然后只需用t的式子表示DN、DM2、MN2,分三種情況(①DN=DM,②ND=NM,③MN=MD)討論就可解決問題.試題解析:(1)∵點B是點A關于y軸的對稱點,∴拋物線的對稱軸為y軸,∴拋物線的頂點為(0,),故拋物線的解析式可設為y=ax2+.∵A(﹣1,2)在拋物線y=ax2+上,∴a+=2,解得a=﹣,∴拋物線的函數(shù)關系表達式為y=﹣x2+;(2)①當點F在第一象限時,如圖1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴點C的坐標為(3,0).設直線AC的解析式為y=mx+n,則有,解得,∴直線AC的解析式為y=﹣x+.設正方形OEFG的邊長為p,則F(p,p).∵點F(p,p)在直線y=﹣x+上,∴﹣p+=p,解得p=1,∴點F的坐標為(1,1).②當點F在第二象限時,同理可得:點F的坐標為(﹣3,3),此時點F不在線段AC上,故舍去.綜上所述:點F的坐標為(1,1);(3)過點M作MH⊥DN于H,如圖2,則OD=t,OE=t+1.∵點E和點C重合時停止運動,∴0≤t≤2.當x=t時,y=﹣t+,則N(t,﹣t+),DN=﹣t+.當x=t+1時,y=﹣(t+1)+=﹣t+1,則M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.①當DN=DM時,(﹣t+)2=t2﹣t+2,解得t=;②當ND=NM時,﹣t+=,解得t=3﹣;③當MN=MD時,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.綜上所述:當△DMN是等腰三角形時,t的值為,3﹣或1.考點:二次函數(shù)綜合題.24、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)點P的坐標為(0,4)或(0,1).【分析】(1)先把A點坐標代入y=中求出k得到反比例函數(shù)解析式為y=﹣,再利用反比例函數(shù)解析式確定B(﹣10,1),然后利用待定系數(shù)法求一次解析式;(2)根據(jù)圖象即可求得;(3)設一次函數(shù)圖象與y軸的交點為Q,易得Q(0,6),設P(0,m),利用三角形面積公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到點P的坐標.【詳解】解:(1)把A(﹣2,5)代入反比例函數(shù)y1=得k=﹣2×5=﹣10,∴反比例函數(shù)解析式為y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,則B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+b得,解得,∴一次函數(shù)解析式為y2=x+6;(2)由圖象可知,y1≥y2時自變量x的取值范圍是x≤﹣10或﹣2≤x<0;(3)設y=x+6與y軸的交點為Q,易得Q(0,6),設P(0,m),∴S△APB=S△BPQ﹣S△APQ=1,|m﹣6|×(10﹣2)=1,解得m1=4,m2=1.∴點P的坐標為(0,4)或(0,1).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.25、(1)直線AB的解析式為,反比例函數(shù)的解析式為;(2)∠ACO=30°;(3)當為60°時,OC'⊥AB,AB'=1.【分析】(1)設直線AB的解析式為y=kx+b(k≠0),將A與B坐標代入求出k與b的值,確定出直線AB的解析式,將D坐標代入直線AB解析式中求出n的值,確定出D的坐標,將D坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;(2)聯(lián)立兩函數(shù)解析式求出C坐標,過C作CH垂直于x軸,在直角三角形OCH中,由OH與HC的長求出tan∠COH的值,利用特殊角的三角函數(shù)值求出∠COH的度數(shù),在三角形AOB中,由OA與OB的長求出tan∠ABO的值,進而求出∠ABO的度數(shù),由∠ABO-∠COH即可求出∠ACO的度數(shù);(3)過點B1作B′G⊥x軸于點G,先求得∠OCB=30°,進而求得α=∠COC′=60°,根據(jù)旋轉的性質,得出∠BOB′=α=60°,解直角三角形求得B′的坐標,然后根據(jù)勾股定理即可求得AB′的長.【詳解】解:(1)設直線AB的解析式為y=kx+b(k≠0),將A(0,1),B(-1,0)代入得:解得,故直線AB解析式為y=x+1,將D(2,n)代入直線AB解析式得:n=2+1=6,則D(2,6),將D坐標代入中,得:m=12,則反比例解析式為;(2)聯(lián)立兩函數(shù)解析式得:解得解得:或,則C坐標為(-6,-2),過點C作CH⊥x軸于點H
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省珠海市金灣區(qū)2025-2026學年度第一學期期末七年級地理試題(無答案)
- 養(yǎng)老院入住資格審核制度
- 信息安全與保密管理制度
- 空調公司管理制度廣告宣傳管理規(guī)定樣本
- 乙烯裝置操作工崗后知識考核試卷含答案
- 我國上市公司獨立董事薪酬激勵制度:現(xiàn)狀、問題與優(yōu)化路徑
- 我國上市公司換股合并中股東主動退出制度的多維審視與完善路徑
- 助聽器驗配師持續(xù)改進考核試卷含答案
- 硅烷法多晶硅制取工崗前創(chuàng)新實踐考核試卷含答案
- 化工萃取工操作規(guī)范評優(yōu)考核試卷含答案
- GB 11174-2025液化石油氣
- 熱工儀表工試題全集
- 建筑室外亮化施工方案
- 2025-2030老年婚戀市場需求分析與服務平臺優(yōu)化方向
- 引水隧洞洞挖專項施工方案
- 急性發(fā)熱課件
- 醫(yī)療器械生產(chǎn)企業(yè)變更控制程序
- 疼痛科醫(yī)師進修總結匯報
- 研究生學術交流論壇策劃
- 關于個人述責述廉存在問題及整改措施
- 靜脈穿刺血管選擇課件
評論
0/150
提交評論