2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題含解析_第1頁
2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題含解析_第2頁
2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題含解析_第3頁
2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題含解析_第4頁
2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆江蘇省無錫市江陰市數(shù)學(xué)九上期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.一副三角尺按如圖的位置擺放(頂點(diǎn)C與F重合,邊CA與邊FE重合,頂點(diǎn)B、C、D在一條直線上).將三角尺DEF繞著點(diǎn)F按逆時(shí)針方向旋轉(zhuǎn)n°后(0<n<180),如果BA∥DE,那么n的值是()A.105 B.95 C.90 D.752.拋物線y=x2+kx﹣1與x軸交點(diǎn)的個(gè)數(shù)為()A.0個(gè) B.1個(gè) C.2個(gè) D.以上都不對(duì)3.在一個(gè)不透明的布袋中有紅色、黑色的球共10個(gè),它們除顏色外其余完全相同.小娟通過多次摸球試驗(yàn)后發(fā)現(xiàn)其中摸到黑球的頻率穩(wěn)定在60%附近,則口袋中黑球的個(gè)數(shù)很可能是()A.4 B.5 C.6 D.74.如圖,拋物線的對(duì)稱軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:①;②;③方程的兩個(gè)根是,;④當(dāng)時(shí),的取值范圍是;⑤當(dāng)時(shí),隨增大而增大其中結(jié)論正確的個(gè)數(shù)是A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5.若是一元二次方程的兩個(gè)實(shí)數(shù)根,則的值為()A. B. C. D.6.如圖,的半徑為2,圓心的坐標(biāo)為,點(diǎn)是上的任意一點(diǎn),,且、與軸分別交于、兩點(diǎn),若點(diǎn)、點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則的最大值為()A.7 B.14 C.6 D.157.在一個(gè)有10萬人的小鎮(zhèn),隨機(jī)調(diào)查了1000人,其中有120人周六早上觀看中央電視臺(tái)的“朝聞天下”節(jié)目,那么在該鎮(zhèn)隨便問一個(gè)人,他在周六早上觀看中央電視臺(tái)的“朝聞天下”節(jié)目的概率大約是()A. B. C. D.8.二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;;,其中正確結(jié)論的是A. B. C. D.9.如圖所示幾何體的左視圖是()A. B. C. D.10.如圖,D、E分別是△ABC的邊AB、BC上的點(diǎn),DE∥AC.若S△BDE:S△ADE=1:2.則S△DOE:S△AOC的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.點(diǎn)是二次函數(shù)圖像上一點(diǎn),則的值為__________12.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.如果∠B=60°,AC=6,那么CD的長為______.13.如圖,圓錐的底面半徑r為4,沿著一條母線l剪開后所得扇形的圓心角?=90°,則該圓錐的母線長是_________________.14.如圖,已知PA,PB是⊙O的兩條切線,A,B為切點(diǎn).C是⊙O上一個(gè)動(dòng)點(diǎn).且不與A,B重合.若∠PAC=α,∠ABC=β,則α與β的關(guān)系是_______.15.如圖,拋物線y=﹣(x+1)(x﹣9)與坐標(biāo)軸交于A、B、C三點(diǎn),D為頂點(diǎn),連結(jié)AC,BC.點(diǎn)P是該拋物線在第一象限內(nèi)上的一點(diǎn).過點(diǎn)P作y軸的平行線交BC于點(diǎn)E,連結(jié)AP交BC于點(diǎn)F,則的最大值為_______.16.如圖,在菱形中,對(duì)角線交于點(diǎn),過點(diǎn)作于點(diǎn),已知BO=4,S菱形ABCD=24,則___.17.如圖,在平面直角坐標(biāo)系中,△ABC和△A′B′C′是以坐標(biāo)原點(diǎn)O為位似中心的位似圖形,且點(diǎn)B(3,1),B′(6,2),若點(diǎn)A′(5,6),則A的坐標(biāo)為______.18.已知,則=_____.三、解答題(共66分)19.(10分)拋物線與軸交于A,B兩點(diǎn),與軸交于點(diǎn)C,連接BC.(1)如圖1,求直線BC的表達(dá)式;(2)如圖1,點(diǎn)P是拋物線上位于第一象限內(nèi)的一點(diǎn),連接PC,PB,當(dāng)△PCB面積最大時(shí),一動(dòng)點(diǎn)Q從點(diǎn)P從出發(fā),沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)G處,再沿適當(dāng)路徑運(yùn)動(dòng)到軸上的某個(gè)點(diǎn)H處,最后到達(dá)線段BC的中點(diǎn)F處停止,求當(dāng)△PCB面積最大時(shí),點(diǎn)P的坐標(biāo)及點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中經(jīng)過的最短路徑的長;(3)如圖2,在(2)的條件下,當(dāng)△PCB面積最大時(shí),把拋物線向右平移使它的圖象經(jīng)過點(diǎn)P,得到新拋物線,在新拋物線上,是否存在點(diǎn)E,使△ECB的面積等于△PCB的面積.若存在,請(qǐng)求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.20.(6分)(1)解方程:(2)已知點(diǎn)P(a+b,-1)與點(diǎn)Q(-5,a-b)關(guān)于原點(diǎn)對(duì)稱,求a,b的值.21.(6分)如圖,在正方形中,為邊的中點(diǎn),點(diǎn)在邊上,且,延長交的延長線于點(diǎn).(1)求證:△∽△.(2)若,求的長.22.(8分)如圖,為的直徑,、為上兩點(diǎn),,,垂足為.直線交的延長線于點(diǎn),連接.(1)判斷與的位置關(guān)系,并說明理由;(2)求證:.23.(8分)如圖,在邊長為4的正方形ABCD中,∠EDF=90°,點(diǎn)E在邊AB上且不與點(diǎn)A重合,點(diǎn)F在邊BC的延長線上,DE交AC于Q,連接EF交AC于P(1)求證:△ADE≌△CDF;(2)求證:PE=PF;(3)當(dāng)AE=1時(shí),求PQ的長.24.(8分)為響應(yīng)市政府關(guān)于“垃圾不落地市區(qū)更美麗”的主題宣傳活動(dòng),鄭州外國語中學(xué)隨機(jī)調(diào)查了部分學(xué)生對(duì)垃圾分類知識(shí)的掌握情況,調(diào)查選項(xiàng)分為“A:非常了解;B:比較了解;C:了解較少;D:不了解”四種,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)圖中提供的信息,解答下列問題;求______,并補(bǔ)全條形統(tǒng)計(jì)圖;若我校學(xué)生人數(shù)為1000名,根據(jù)調(diào)查結(jié)果,估計(jì)該?!胺浅A私狻迸c“比較了解”的學(xué)生共有______名;已知“非常了解”的是3名男生和1名女生,從中隨機(jī)抽取2名向全校做垃圾分類的知識(shí)交流,請(qǐng)畫樹狀圖或列表的方法,求恰好抽到1男1女的概率.25.(10分)如圖,在Rt△ABC中,,D是AB的中點(diǎn),過D點(diǎn)作AB的垂線交AC于點(diǎn)E,若BC=6,sinA=,求DE的長.26.(10分)如圖所示,是某路燈在鉛垂面內(nèi)的示意圖,燈柱的高為10米,燈柱與燈桿的夾角為.路燈采用錐形燈罩,在地面上的照射區(qū)域的長為13.3米,從,兩處測(cè)得路燈的仰角分別為和,且.求燈桿的長度.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】畫出圖形求解即可.【詳解】解:∵三角尺DEF繞著點(diǎn)F按逆時(shí)針方向旋轉(zhuǎn)n°后(0<n<180),BA∥DE,∴旋轉(zhuǎn)角=90°+45°﹣30°=105°,故選:A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)變換,平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,屬于中考??碱}型.2、C【分析】設(shè)y=0,得到一元二次方程,根據(jù)根的判別式判斷有幾個(gè)解就有與x軸有幾個(gè)交點(diǎn).【詳解】解:∵拋物線y=x2+kx﹣1,∴當(dāng)y=0時(shí),則0=x2+kx﹣1,∴△=b2﹣4ac=k2+4>0,∴方程有2個(gè)不相等的實(shí)數(shù)根,∴拋物線y=x2+kx﹣與x軸交點(diǎn)的個(gè)數(shù)為2個(gè),故選C.3、C【分析】根據(jù)題意得出摸出黑球的頻率,繼而根據(jù)頻數(shù)=總數(shù)×頻率計(jì)算即可.【詳解】∵小娟通過多次摸球試驗(yàn)后發(fā)現(xiàn)其中摸到黑球的頻率穩(wěn)定在60%附近,∴口袋中黑球的個(gè)數(shù)可能是10×60%=6個(gè).故選:C.【點(diǎn)睛】本題主要考查利用頻率估計(jì)概率.大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【分析】利用拋物線與軸的交點(diǎn)個(gè)數(shù)可對(duì)①進(jìn)行判斷;由對(duì)稱軸方程得到,然后根據(jù)時(shí)函數(shù)值為0可得到,則可對(duì)②進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與軸的一個(gè)交點(diǎn)坐標(biāo)為,則可對(duì)③進(jìn)行判斷;根據(jù)拋物線在軸上方所對(duì)應(yīng)的自變量的范圍可對(duì)④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對(duì)⑤進(jìn)行判斷.【詳解】解:拋物線與軸有2個(gè)交點(diǎn),,所以①正確;,即,而時(shí),,即,,所以②錯(cuò)誤;拋物線的對(duì)稱軸為直線,而點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為,方程的兩個(gè)根是,,所以③正確;根據(jù)對(duì)稱性,由圖象知,當(dāng)時(shí),,所以④錯(cuò)誤;拋物線的對(duì)稱軸為直線,當(dāng)時(shí),隨增大而增大,所以⑤正確.故選:.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對(duì)于二次函數(shù),二次項(xiàng)系數(shù)決定拋物線的開口方向和大?。寒?dāng)時(shí),拋物線向上開口;當(dāng)時(shí),拋物線向下開口;一次項(xiàng)系數(shù)和二次項(xiàng)系數(shù)共同決定對(duì)稱軸的位置:當(dāng)與同號(hào)時(shí)(即,對(duì)稱軸在軸左;當(dāng)與異號(hào)時(shí)(即,對(duì)稱軸在軸右;常數(shù)項(xiàng)決定拋物線與軸交點(diǎn)位置:拋物線與軸交于;拋物線與軸交點(diǎn)個(gè)數(shù)由△決定:△時(shí),拋物線與軸有2個(gè)交點(diǎn);△時(shí),拋物線與軸有1個(gè)交點(diǎn);△時(shí),拋物線與軸沒有交點(diǎn).5、C【分析】由一元二次方程根與系數(shù)的關(guān)系可得x1+x2=-3,x1·x2=2,利用完全平方公式即可求出答案.【詳解】∵是一元二次方程的兩個(gè)實(shí)數(shù)根,∴x1+x2=-3,x1·x2=2,∴=(x1+x2)2-2x1·x2=9-4=5,故選:C.【點(diǎn)睛】本題考查一元二次方程根與系數(shù)的關(guān)系,若一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根為,那么x1+x2=,x1·x2=,熟練掌握韋達(dá)定理是解題關(guān)鍵.6、B【分析】根據(jù)“PA⊥PB,點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱”可知AB=2OP,從而確定要使AB取得最大值,則OP需取得最大值,然后過點(diǎn)M作MQ⊥x軸于點(diǎn)Q,確定OP的最大值即可.【詳解】∵PA⊥PB∴∠APB=90°∵點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)O對(duì)稱,∴AO=BO∴AB=2OP若要使AB取得最大值,則OP需取得最大值,連接OM,交○M于點(diǎn),當(dāng)點(diǎn)P位于位置時(shí),OP取得最小值,過點(diǎn)M作MQ⊥x軸于點(diǎn)Q,則OQ=3,MQ=4,∴OM=5∵∴當(dāng)點(diǎn)P在的延長線于○M的交點(diǎn)上時(shí),OP取最大值,∴OP的最大值為3+2×2=7∴AB的最大值為7×2=14故答案選B.【點(diǎn)睛】本題考查的是圓上動(dòng)點(diǎn)與最值問題,能夠找出最值所在的點(diǎn)是解題的關(guān)鍵.7、C【解析】試題解析:由題意知:1000人中有120人看中央電視臺(tái)的早間新聞,∴在該鎮(zhèn)隨便問一人,他看早間新聞的概率大約是.故選C.【點(diǎn)睛】本題考查概率公式和用樣本估計(jì)總體,概率計(jì)算一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.8、C【分析】利用圖象信息以及二次函數(shù)的性質(zhì)一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對(duì)稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,故②錯(cuò)誤,∵x=﹣2時(shí),y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時(shí),y>0,x=1時(shí),y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯(cuò)誤,∵x=﹣1時(shí),y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點(diǎn)睛】本題考查二次函數(shù)的圖象與系數(shù)的關(guān)系等知識(shí),解題的關(guān)鍵是讀懂圖象信息,靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.9、B【分析】根據(jù)從左面看得到的圖形是左視圖,可得答案.【詳解】解:如圖所示,幾何體的左視圖是:.故選:B.【點(diǎn)睛】本題考查了簡(jiǎn)單組合體的三視圖,從左面看得到的圖形是左視圖.10、B【分析】依次證明和,利用相似三角形的性質(zhì)解題.【詳解】∵,

∴,

∴,

∵∥,∴,∴,

∵∥,∴,∴,

故選:B.【點(diǎn)睛】本題主要考查了相似三角形的判定及其性質(zhì)的應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用形似三角形的判定及其性質(zhì)來分析、判斷、推理或解答.二、填空題(每小題3分,共24分)11、1【分析】把點(diǎn)代入即可求得值,將變形,代入即可.【詳解】解:∵點(diǎn)是二次函數(shù)圖像上,

∴則.∴

故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)點(diǎn)坐標(biāo)求待定系數(shù)是解題的關(guān)鍵.12、6【分析】由AB是⊙O的直徑,根據(jù)由垂徑定理得出AD=AC,進(jìn)而利用等邊三角形的判定和性質(zhì)求得答案.【詳解】解:連接AD,∵⊙O的直徑AB垂直于弦CD,垂足為E,∴AD=AC,∵∠B=60°,∴△ACD是等邊三角形,∵AC=6,∴CD=AC=6.故答案為:6.【點(diǎn)睛】此題考查了垂徑定理以及等邊三角形數(shù)的判定與性質(zhì).注意由垂徑定理得出AD=AC是關(guān)鍵.13、1【分析】由題意首先求得展開之后扇形的弧長也就是圓錐的底面周長,進(jìn)一步利用弧長計(jì)算公式求得扇形的半徑,即圓錐的母線l.【詳解】解:扇形的弧長=4×2π=8π,可得=8π解得:l=1.故答案為:1.【點(diǎn)睛】本題考查圓錐的計(jì)算及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用有關(guān)定理來分析、判斷、推理或解答.14、或【分析】分點(diǎn)C在優(yōu)弧AB上和劣弧AB上兩種情況討論,根據(jù)切線的性質(zhì)得到∠OAC的度數(shù),再根據(jù)圓周角定理得到∠AOC的度數(shù),再利用三角形內(nèi)角和定理得出α與β的關(guān)系.【詳解】解:當(dāng)點(diǎn)C在優(yōu)弧AB上時(shí),如圖,連接OA、OB、OC,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴;當(dāng)點(diǎn)C在劣弧AB上時(shí),如圖,∵PA是⊙O的切線,∴∠PAO=90°,∴∠OAC=90°-α=∠OCA,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴.綜上:α與β的關(guān)系是或.故答案為:或.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì),利用圓周角定理是解題的關(guān)鍵,同時(shí)注意分類討論.15、【分析】根據(jù)拋物線的解析式求得A、B、C的坐標(biāo),進(jìn)而求得AB、BC、AC的長,根據(jù)待定系數(shù)法求得直線BC的解析式,作PN⊥BC,垂足為N.先證明△PNE∽△BOC,由相似三角形的性質(zhì)可知PN=PE,然后再證明△PFN∽△AFC,由相似三角形的性質(zhì)可得到PF:AF與m的函數(shù)關(guān)系式,從而可求得的最大值.【詳解】∵拋物線y=﹣(x+1)(x﹣9)與坐標(biāo)軸交于A、B、C三點(diǎn),∴A(﹣1,0),B(9,0),令x=0,則y=1,∴C(0,1),∴BC,設(shè)直線BC的解析式為y=kx+b.∵將B、C的坐標(biāo)代入得:,解得k=﹣,b=1,∴直線BC的解析式為y=﹣x+1.設(shè)點(diǎn)P的橫坐標(biāo)為m,則縱坐標(biāo)為﹣(m+1)(m﹣9),點(diǎn)E(m,﹣m+1),∴PE=﹣(m+1)(m﹣9)﹣(﹣m+1)=﹣m2+1m.作PN⊥BC,垂足為N.∵PE∥y軸,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴===.∴PN=PE=(-m2+1m).∵AB2=(9+1)2=100,AC2=12+12=10,BC2=90,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△AFC.∴===﹣m2+m=﹣(m﹣)2+.∵,∴當(dāng)m時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)的解析式、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及相似三角形的證明與性質(zhì),求得與m的函數(shù)關(guān)系式是解題的關(guān)鍵.16、【分析】根據(jù)菱形面積=對(duì)角線積的一半可求,再根據(jù)勾股定理求出,然后由菱形的面積即可得出結(jié)果.【詳解】∵四邊形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案為.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理以及菱形面積公式.熟練掌握菱形的性質(zhì),由勾股定理求出是解題的關(guān)鍵.17、(2.5,3)【分析】利用點(diǎn)B(3,1),B′(6,2)即可得出位似比進(jìn)而得出A的坐標(biāo).【詳解】解:∵點(diǎn)B(3,1),B′(6,2),點(diǎn)A′(5,6),∴A的坐標(biāo)為:(2.5,3).故答案為:(2.5,3).【點(diǎn)睛】本題考查了位似變換:如果兩個(gè)圖形不僅是相似圖形,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心.18、【解析】根據(jù)題意,設(shè)x=5k,y=3k,代入即可求得的值.【詳解】解:由題意,設(shè)x=5k,y=3k,∴==.故答案為.【點(diǎn)睛】本題考查了分式的求值,解題的關(guān)鍵是根據(jù)分式的性質(zhì)對(duì)已知分式進(jìn)行變形.三、解答題(共66分)19、(1)(2)點(diǎn)Q按照要求經(jīng)過的最短路徑長為(3)存在,滿足條件的點(diǎn)E有三個(gè),即(,),(,),(,)【分析】(1)先求出點(diǎn),,的坐標(biāo),利用待定系數(shù)法即可得出結(jié)論;(2)先確定出,再利用三角形的面積公式得出,即可得出結(jié)論;(3)先確定出平移后的拋物線解析式,進(jìn)而求出,在判斷出建立方程即可得出結(jié)論.【詳解】解:(1)令,得,∴,.∴A(,0),B(,0).令,得.∴C(0,3).設(shè)直線BC的函數(shù)表達(dá)式為,把B(,0)代入,得.解得,.所以直線BC的函數(shù)表達(dá)式為.(2)過P作PD⊥軸交直線BC于M.∵直線BC表達(dá)式為,設(shè)點(diǎn)M的坐標(biāo)為,則點(diǎn)P的坐標(biāo)為.則.∴.∴此時(shí),點(diǎn)P坐標(biāo)為(,).根據(jù)題意,要求的線段PG+GH+HF的最小值,只需要把這三條線段“搬”在一直線上.如圖1,作點(diǎn)P關(guān)于軸的對(duì)稱點(diǎn),作點(diǎn)F關(guān)于軸的對(duì)稱點(diǎn),連接,交軸于點(diǎn)G,交軸于點(diǎn)H.根據(jù)軸對(duì)稱性可得,.此時(shí)PG+GH+HF的最小值=.∵點(diǎn)P坐標(biāo)為(,),∴點(diǎn)的坐標(biāo)為(,).∵點(diǎn)F是線段BC的中點(diǎn),∴點(diǎn)F的坐標(biāo)為(,).∴點(diǎn)的坐標(biāo)為(,).∵點(diǎn),P兩點(diǎn)的橫坐相同,∴⊥軸.∵,P兩點(diǎn)關(guān)于軸對(duì)稱,∴⊥軸.∴.∴.即點(diǎn)Q按照要求經(jīng)過的最短路徑長為.(3)如圖2,在拋物線中,令,,或,由平移知,拋物線向右平移到,則平移了個(gè)單位,,設(shè)點(diǎn),過點(diǎn)作軸交于,直線的解析式為,,的面積等于的面積,,由(2)知,,,,或或或(舍,,或,或,.綜上所述,滿足條件的點(diǎn)E有三個(gè),即(,),(,),(,).【點(diǎn)睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積公式,利用軸對(duì)稱確定最短路徑,平移的性質(zhì),解絕對(duì)值方程,解本題的關(guān)鍵是確定出和.20、(1);(2).【分析】(1)利用因式分解法解一元二次方程即可得;(2)先根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)變換規(guī)律可得一個(gè)關(guān)于a、b二元一次方程組,再利用加減消元法解方程組即可得.【詳解】(1),,或,或,即;(2)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)變換規(guī)律:橫、縱坐標(biāo)均互為相反數(shù),則,解得.【點(diǎn)睛】本題考查了解一元二次方程、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)變換規(guī)律、解二元一次方程組,熟練掌握方程(組)的解法和關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)變換規(guī)律是解題關(guān)鍵.21、(1)詳見解析;(2)1.【分析】(1)先根據(jù)正方形的性質(zhì)、直角三角形的性質(zhì)得出,再加上一組直角相等,根據(jù)相似三角形的判定定理即可得證;(2)先根據(jù)正方形的性質(zhì)、中點(diǎn)的性質(zhì)求出AE的長,再根據(jù)勾股定理求出BE的長,最后根據(jù)相似三角形的性質(zhì)、線段的和差即可得.【詳解】(1)∵四邊形ABCD為正方形,且;(2)∵四邊形ABCD為正方形,點(diǎn)E為AD的中點(diǎn)在中,由(1)知,,即故的長為1.【點(diǎn)睛】本題考查了正方形的性質(zhì)、勾股定理、相似三角形的判定定理與性質(zhì)等知識(shí)點(diǎn),較難的是題(2),由題(1)的結(jié)論聯(lián)系到利用相似三角形的性質(zhì)是解題關(guān)鍵.22、(1)EF與⊙O相切,理由見解析;(2)證明見解析.【分析】(1)連接OC,由題意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切線;(2)連接BC,根據(jù)直徑所對(duì)圓周角是直角證得△ACF∽△ABC,即可證得結(jié)論.【詳解】(1)EF與⊙O相切,理由如下:如圖,連接OC,∵,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF是⊙O的切線;(2)連接BC,∵AB為直徑,∴∠BCA=90°,又∵∠FAC=∠BAC,∴△ACF∽△ABC,∴,∴.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,相似三角形的判定和性質(zhì),熟練運(yùn)用切線的判定和性質(zhì)是本題的關(guān)鍵.23、(1)見解析;(2)見解析;(3)【分析】(1)根據(jù)ASA證明即可.(2)作FH∥AB交AC的延長線于H,由“AAS”可證△APE≌△HPF,可得PE=PF;(3)如圖2,先根據(jù)平行線分線段成比例定理表示,可得AQ的長,再計(jì)算AH的長,根據(jù)(2)中的全等可得AP=PH,由線段的差可得結(jié)論.【詳解】(1)證明:∵四邊形ABCD是正方形,∴DA=DC,∠DAE=∠BCD=∠DCF=∠ADC=90°,∴∠ADE+∠EDC=90°∵∠EDF=90°∴∠EDC+∠CDF=90°∴∠ADE=∠CDF在△ADE和△CDF中,∵∴△ADE≌△CDF(ASA).(2)證明:由(1)知:△ADE≌△CDF,∴AE=CF,作FH∥AB交AC的延長線于H.∵四邊形ABCD是正方形,∴∠ACB=∠FCH=45°,∵AB∥FH,∴∠HFC=∠ABC=90°,∴∠FCH=∠H=45°,∴CF=FH=AE,在△AEP和△HFP中,∵,∴△APE≌△HPF(AAS),∴PE=PF;(3)∵AE∥CD,∴,∵AE=1,CD=4,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論