版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第頁專題七平面解析幾何考點(diǎn)五年考情(2020-2024)命題趨勢(shì)考點(diǎn)01直線與圓位置關(guān)系的判斷與應(yīng)用2021年新高考I卷、2021年新高考II卷:均是多選題.1.直線與圓位置關(guān)系的判斷;2.圓的切線問題;3.直線與圓相交,弦長(zhǎng)、半徑、弦心距關(guān)系的應(yīng)用;4.兩圓位置關(guān)系的判斷;5.兩圓、公共弦、公切線問題;6.與圓錐曲線的交匯問題考點(diǎn)02直線與圓的相交弦問題2023年新課標(biāo)Ⅱ卷:由三角形面積求參數(shù).考點(diǎn)03圓的切線問題2023年新課標(biāo)Ⅰ卷:兩切線的夾角問題.考點(diǎn)04圓的公切線問題2022年新高考I卷:求兩圓公切線方程.考點(diǎn)05橢圓的定義及其應(yīng)用2021年新高考I卷:橢圓焦點(diǎn)三角形中兩邊乘積的最值.關(guān)于橢圓的問題的考查,是重中之重,往往客觀題、主觀題雙重考查.1.橢圓的定義及應(yīng)用,焦點(diǎn)三角形;2.求橢圓的標(biāo)準(zhǔn)方程;3.研究橢圓的幾何性質(zhì),特別是離心率問題;4.直線與橢圓的位置關(guān)系問題,分兩類,一類是客觀題,二類是主觀題,其中主觀題往往是先根據(jù)幾何性質(zhì)等條件,求標(biāo)準(zhǔn)方程,而后進(jìn)一步聯(lián)立方程組,解決求直線方程、求三角形面積、定點(diǎn)定值、定直線以及最值范圍問題.考點(diǎn)06橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)2023年新高考Ⅰ卷:由兩橢圓離心率關(guān)系求參數(shù);2024年新高考Ⅱ卷:與圓上點(diǎn)相關(guān)線段中點(diǎn)的軌跡方程.考點(diǎn)07直線與橢圓相交關(guān)系下的簡(jiǎn)單問題2022年新高考I卷:求三角形周長(zhǎng);2022年新高考II卷:求直線方程;2023年新課標(biāo)Ⅱ卷:根據(jù)兩三角形面積關(guān)系求參數(shù).考點(diǎn)08直線與橢圓相交關(guān)系下的綜合問題2020年新高考Ⅰ卷;求橢圓方程、存在定點(diǎn),使線段長(zhǎng)為定值;2020年新高考Ⅱ卷:求橢圓方程、三角形面積的最值;2021年新高考II卷:求橢圓方程、由直線與圓相切,證明三點(diǎn)共線;2024年新課標(biāo)Ⅰ卷:求離心率、由三角形面積求直線方程.考點(diǎn)09雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)2021年新高考II卷:由離心率求漸近線方程;2023年新課標(biāo)Ⅰ卷、2024年新課標(biāo)Ⅰ卷:不同條件下求離心率.對(duì)雙曲線的綜合考查,有增強(qiáng)趨勢(shì).1.雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì),特別是漸近線、離心率問題;2.直線與雙曲線的位置關(guān)系,往往是先根據(jù)幾何性質(zhì)等條件,求標(biāo)準(zhǔn)方程,而后進(jìn)一步聯(lián)立方程組,解決求直線方程、求三角形面積、定點(diǎn)定值、定直線以及最值范圍問題等.考點(diǎn)10直線與雙曲線位置關(guān)系下的綜合問題2021年新高考I卷:求標(biāo)準(zhǔn)方程、求兩條直線的斜率之和;2022年新高考I卷:求直線斜率、三角形面積;2022年新高考II卷:結(jié)構(gòu)不完整.求雙曲線方程、由兩條件證明另一成立;2023年新課標(biāo)Ⅱ卷:求雙曲線方程、證明點(diǎn)在定直線上;2024年新課標(biāo)Ⅱ卷:求點(diǎn)的坐標(biāo)、證明坐標(biāo)關(guān)系構(gòu)成等比數(shù)列、三角形面積數(shù)列,相鄰項(xiàng)相等.考點(diǎn)11拋物線的焦點(diǎn)、準(zhǔn)線、焦參數(shù)2021年新高考I、II卷近幾年對(duì)拋物線的考查,全是以客觀題形式,特別是多選題,擴(kuò)大對(duì)其考查范圍的覆蓋.1.拋物線的標(biāo)準(zhǔn)方程及幾何性質(zhì);2.直線與拋物線的位置關(guān)系考點(diǎn)12拋物線的焦點(diǎn)弦問題2020年新高考Ⅰ卷:求弦長(zhǎng);2022年新高考II卷:多選題;2023年新課標(biāo)Ⅱ卷:多選題.考點(diǎn)13直線與拋物線的位置關(guān)系2022年新高考I卷:多選題.直線、直線與拋物線相切、線段長(zhǎng)度關(guān)系;2024年新高考Ⅱ卷:多選題.與圓相關(guān).考點(diǎn)14曲線與方程2020年新高考Ⅰ卷:多選題.討論方程表示的曲線;2024年新課標(biāo)Ⅰ卷:多選題.根據(jù)曲線求方程,研究其性質(zhì).這是解析幾何的基本問題.應(yīng)與圓錐曲線綜合考查.考點(diǎn)01直線與圓位置關(guān)系的判斷與應(yīng)用1.(多選)(2021年全國(guó)新高考II卷數(shù)學(xué)試題)已知直線與圓,點(diǎn),則下列說法正確的是(
)A.若點(diǎn)A在圓C上,則直線l與圓C相切 B.若點(diǎn)A在圓C內(nèi),則直線l與圓C相離C.若點(diǎn)A在圓C外,則直線l與圓C相離 D.若點(diǎn)A在直線l上,則直線l與圓C相切【答案】ABD【分析】轉(zhuǎn)化點(diǎn)與圓、點(diǎn)與直線的位置關(guān)系為的大小關(guān)系,結(jié)合點(diǎn)到直線的距離及直線與圓的位置關(guān)系即可得解.【詳解】圓心到直線l的距離,若點(diǎn)在圓C上,則,所以,則直線l與圓C相切,故A正確;若點(diǎn)在圓C內(nèi),則,所以,則直線l與圓C相離,故B正確;若點(diǎn)在圓C外,則,所以,則直線l與圓C相交,故C錯(cuò)誤;若點(diǎn)在直線l上,則即,所以,直線l與圓C相切,故D正確.故選:ABD.2.(多選)(2021年全國(guó)新高考I卷數(shù)學(xué)試題)已知點(diǎn)在圓上,點(diǎn)、,則(
)A.點(diǎn)到直線的距離小于B.點(diǎn)到直線的距離大于C.當(dāng)最小時(shí),D.當(dāng)最大時(shí),【答案】ACD【分析】計(jì)算出圓心到直線的距離,可得出點(diǎn)到直線的距離的取值范圍,可判斷AB選項(xiàng)的正誤;分析可知,當(dāng)最大或最小時(shí),與圓相切,利用勾股定理可判斷CD選項(xiàng)的正誤.【詳解】圓的圓心為,半徑為,直線的方程為,即,圓心到直線的距離為,所以,點(diǎn)到直線的距離的最小值為,最大值為,A選項(xiàng)正確,B選項(xiàng)錯(cuò)誤;如下圖所示:當(dāng)最大或最小時(shí),與圓相切,連接、,可知,,,由勾股定理可得,CD選項(xiàng)正確.故選:ACD.【點(diǎn)睛】結(jié)論點(diǎn)睛:若直線與半徑為的圓相離,圓心到直線的距離為,則圓上一點(diǎn)到直線的距離的取值范圍是.考點(diǎn)02直線與圓的相交弦問題3.(2023年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)已知直線與交于A,B兩點(diǎn),寫出滿足“面積為”的m的一個(gè)值.【答案】(中任意一個(gè)皆可以)【分析】根據(jù)直線與圓的位置關(guān)系,求出弦長(zhǎng),以及點(diǎn)到直線的距離,結(jié)合面積公式即可解出.【詳解】設(shè)點(diǎn)到直線的距離為,由弦長(zhǎng)公式得,所以,解得:或,由,所以或,解得:或.故答案為:(中任意一個(gè)皆可以).考點(diǎn)03圓的切線問題4.(2023年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)過點(diǎn)與圓相切的兩條直線的夾角為,則(
)A.1 B. C. D.【答案】B【分析】方法一:根據(jù)切線的性質(zhì)求切線長(zhǎng),結(jié)合倍角公式運(yùn)算求解;方法二:根據(jù)切線的性質(zhì)求切線長(zhǎng),結(jié)合余弦定理運(yùn)算求解;方法三:根據(jù)切線結(jié)合點(diǎn)到直線的距離公式可得,利用韋達(dá)定理結(jié)合夾角公式運(yùn)算求解.【詳解】方法一:因?yàn)?,即,可得圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,因?yàn)椋瑒t,可得,則,,即為鈍角,所以;法二:圓的圓心,半徑,過點(diǎn)作圓C的切線,切點(diǎn)為,連接,可得,則,因?yàn)榍?,則,即,解得,即為鈍角,則,且為銳角,所以;方法三:圓的圓心,半徑,若切線斜率不存在,則切線方程為,則圓心到切點(diǎn)的距離,不合題意;若切線斜率存在,設(shè)切線方程為,即,則,整理得,且設(shè)兩切線斜率分別為,則,可得,所以,即,可得,則,且,則,解得.故選:B.
考點(diǎn)04圓的公切線問題5.(2022年新高考全國(guó)I卷數(shù)學(xué)真題)寫出與圓和都相切的一條直線的方程.【答案】或或【分析】先判斷兩圓位置關(guān)系,分情況討論即可.【詳解】[方法一]:顯然直線的斜率不為0,不妨設(shè)直線方程為,于是,故①,于是或,再結(jié)合①解得或或,所以直線方程有三條,分別為,,填一條即可[方法二]:設(shè)圓的圓心,半徑為,圓的圓心,半徑,則,因此兩圓外切,由圖像可知,共有三條直線符合條件,顯然符合題意;又由方程和相減可得方程,即為過兩圓公共切點(diǎn)的切線方程,又易知兩圓圓心所在直線OC的方程為,直線OC與直線的交點(diǎn)為,設(shè)過該點(diǎn)的直線為,則,解得,從而該切線的方程為填一條即可[方法三]:圓的圓心為,半徑為,圓的圓心為,半徑為,兩圓圓心距為,等于兩圓半徑之和,故兩圓外切,如圖,當(dāng)切線為l時(shí),因?yàn)?,所以,設(shè)方程為O到l的距離,解得,所以l的方程為,當(dāng)切線為m時(shí),設(shè)直線方程為,其中,,由題意,解得,當(dāng)切線為n時(shí),易知切線方程為,故答案為:或或.考點(diǎn)05橢圓的定義及其應(yīng)用6.(2021年全國(guó)新高考I卷數(shù)學(xué)試題)已知,是橢圓:的兩個(gè)焦點(diǎn),點(diǎn)在上,則的最大值為(
)A.13 B.12 C.9 D.6【答案】C【分析】本題通過利用橢圓定義得到,借助基本不等式即可得到答案.【詳解】由題,,則,所以(當(dāng)且僅當(dāng)時(shí),等號(hào)成立).故選:C.考點(diǎn)06橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)7.(2024年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)已知曲線C:(),從C上任意一點(diǎn)P向x軸作垂線段,為垂足,則線段的中點(diǎn)M的軌跡方程為(
)A.() B.()C.() D.()【答案】A【分析】設(shè)點(diǎn),由題意,根據(jù)中點(diǎn)的坐標(biāo)表示可得,代入圓的方程即可求解.【詳解】設(shè)點(diǎn),則,因?yàn)闉榈闹悬c(diǎn),所以,即,又在圓上,所以,即,即點(diǎn)的軌跡方程為.故選:A8.(2023年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)設(shè)橢圓的離心率分別為.若,則(
)A. B. C. D.【答案】A【分析】根據(jù)給定的橢圓方程,結(jié)合離心率的意義列式計(jì)算作答.【詳解】由,得,因此,而,所以.故選:A考點(diǎn)07直線與橢圓相交關(guān)系下的簡(jiǎn)單問題9.(2023年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)已知橢圓的左、右焦點(diǎn)分別為,,直線與C交于A,B兩點(diǎn),若面積是面積的2倍,則(
).A. B. C. D.【答案】C【分析】首先聯(lián)立直線方程與橢圓方程,利用,求出范圍,再根據(jù)三角形面積比得到關(guān)于的方程,解出即可.【詳解】將直線與橢圓聯(lián)立,消去可得,因?yàn)橹本€與橢圓相交于點(diǎn),則,解得,設(shè)到的距離到距離,易知,則,,,解得或(舍去),故選:C.10.(2022年新高考全國(guó)I卷數(shù)學(xué)真題)已知橢圓,C的上頂點(diǎn)為A,兩個(gè)焦點(diǎn)為,,離心率為.過且垂直于的直線與C交于D,E兩點(diǎn),,則的周長(zhǎng)是.【答案】13【分析】利用離心率得到橢圓的方程為,根據(jù)離心率得到直線的斜率,進(jìn)而利用直線的垂直關(guān)系得到直線的斜率,寫出直線的方程:,代入橢圓方程,整理化簡(jiǎn)得到:,利用弦長(zhǎng)公式求得,得,根據(jù)對(duì)稱性將的周長(zhǎng)轉(zhuǎn)化為的周長(zhǎng),利用橢圓的定義得到周長(zhǎng)為.【詳解】∵橢圓的離心率為,∴,∴,∴橢圓的方程為,不妨設(shè)左焦點(diǎn)為,右焦點(diǎn)為,如圖所示,∵,∴,∴為正三角形,∵過且垂直于的直線與C交于D,E兩點(diǎn),為線段的垂直平分線,∴直線的斜率為,斜率倒數(shù)為,直線的方程:,代入橢圓方程,整理化簡(jiǎn)得到:,判別式,∴,∴,得,∵為線段的垂直平分線,根據(jù)對(duì)稱性,,∴的周長(zhǎng)等于的周長(zhǎng),利用橢圓的定義得到周長(zhǎng)為.故答案為:13.11.(2022年新高考全國(guó)II卷數(shù)學(xué)真題)已知直線l與橢圓在第一象限交于A,B兩點(diǎn),l與x軸,y軸分別交于M,N兩點(diǎn),且,則l的方程為.【答案】【分析】令的中點(diǎn)為,設(shè),,利用點(diǎn)差法得到,設(shè)直線,,,求出、的坐標(biāo),再根據(jù)求出、,即可得解;【詳解】[方法一]:弦中點(diǎn)問題:點(diǎn)差法令的中點(diǎn)為,設(shè),,利用點(diǎn)差法得到,設(shè)直線,,,求出、的坐標(biāo),再根據(jù)求出、,即可得解;解:令的中點(diǎn)為,因?yàn)椋?,設(shè),,則,,所以,即所以,即,設(shè)直線,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直線,即;故答案為:[方法二]:直線與圓錐曲線相交的常規(guī)方法解:由題意知,點(diǎn)既為線段的中點(diǎn)又是線段MN的中點(diǎn),設(shè),,設(shè)直線,,,則,,,因?yàn)?,所以?lián)立直線AB與橢圓方程得消掉y得其中,∴AB中點(diǎn)E的橫坐標(biāo),又,∴∵,,∴,又,解得m=2所以直線,即考點(diǎn)08直線與橢圓相交關(guān)系下的綜合問題12.(2020年新高考全國(guó)卷Ⅰ數(shù)學(xué)試題)已知橢圓C:的離心率為,且過點(diǎn).(1)求的方程:(2)點(diǎn),在上,且,,為垂足.證明:存在定點(diǎn),使得為定值.【答案】(1);(2)詳見解析.【分析】(1)由題意得到關(guān)于的方程組,求解方程組即可確定橢圓方程.(2)方法一:設(shè)出點(diǎn),的坐標(biāo),在斜率存在時(shí)設(shè)方程為,聯(lián)立直線方程與橢圓方程,根據(jù)已知條件,已得到的關(guān)系,進(jìn)而得直線恒過定點(diǎn),在直線斜率不存在時(shí)要單獨(dú)驗(yàn)證,然后結(jié)合直角三角形的性質(zhì)即可確定滿足題意的點(diǎn)的位置.【詳解】(1)由題意可得:,解得:,故橢圓方程為:.(2)[方法一]:通性通法設(shè)點(diǎn),若直線斜率存在時(shí),設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,,因?yàn)?,所以,即,根?jù),代入整理可得:,
所以,整理化簡(jiǎn)得,因?yàn)椴辉谥本€上,所以,故,于是的方程為,所以直線過定點(diǎn)直線過定點(diǎn).當(dāng)直線的斜率不存在時(shí),可得,由得:,得,結(jié)合可得:,解得:或(舍).此時(shí)直線過點(diǎn).令為的中點(diǎn),即,若與不重合,則由題設(shè)知是的斜邊,故,若與重合,則,故存在點(diǎn),使得為定值.[方法二]【最優(yōu)解】:平移坐標(biāo)系將原坐標(biāo)系平移,原來的O點(diǎn)平移至點(diǎn)A處,則在新的坐標(biāo)系下橢圓的方程為,設(shè)直線的方程為.將直線方程與橢圓方程聯(lián)立得,即,化簡(jiǎn)得,即.設(shè),因?yàn)閯t,即.代入直線方程中得.則在新坐標(biāo)系下直線過定點(diǎn),則在原坐標(biāo)系下直線過定點(diǎn).又,D在以為直徑的圓上.的中點(diǎn)即為圓心Q.經(jīng)檢驗(yàn),直線垂直于x軸時(shí)也成立.故存在,使得.[方法三]:建立曲線系A(chǔ)點(diǎn)處的切線方程為,即.設(shè)直線的方程為,直線的方程為,直線的方程為.由題意得.則過A,M,N三點(diǎn)的二次曲線系方程用橢圓及直線可表示為(其中為系數(shù)).用直線及點(diǎn)A處的切線可表示為(其中為系數(shù)).即.對(duì)比項(xiàng)、x項(xiàng)及y項(xiàng)系數(shù)得將①代入②③,消去并化簡(jiǎn)得,即.故直線的方程為,直線過定點(diǎn).又,D在以為直徑的圓上.中點(diǎn)即為圓心Q.經(jīng)檢驗(yàn),直線垂直于x軸時(shí)也成立.故存在,使得.[方法四]:設(shè).若直線的斜率不存在,則.因?yàn)椋瑒t,即.由,解得或(舍).所以直線的方程為.若直線的斜率存在,設(shè)直線的方程為,則.令,則.又,令,則.因?yàn)?,所以,即或.?dāng)時(shí),直線的方程為.所以直線恒過,不合題意;當(dāng)時(shí),直線的方程為,所以直線恒過.綜上,直線恒過,所以.又因?yàn)椋?,所以點(diǎn)D在以線段為直徑的圓上運(yùn)動(dòng).取線段的中點(diǎn)為,則.所以存在定點(diǎn)Q,使得為定值.13.(2020年新高考全國(guó)卷Ⅱ數(shù)學(xué)試題)已知橢圓C:過點(diǎn)M(2,3),點(diǎn)A為其左頂點(diǎn),且AM的斜率為,(1)求C的方程;(2)點(diǎn)N為橢圓上任意一點(diǎn),求△AMN的面積的最大值.【答案】(1);(2)18.【分析】(1)由題意分別求得a,b的值即可確定橢圓方程;(2)首先利用幾何關(guān)系找到三角形面積最大時(shí)點(diǎn)N的位置,然后聯(lián)立直線方程與橢圓方程,結(jié)合判別式確定點(diǎn)N到直線AM的距離即可求得三角形面積的最大值.【詳解】(1)由題意可知直線AM的方程為:,即.當(dāng)y=0時(shí),解得,所以a=4,橢圓過點(diǎn)M(2,3),可得,解得b2=12.所以C的方程:.(2)設(shè)與直線AM平行的直線方程為:,如圖所示,當(dāng)直線與橢圓相切時(shí),與AM距離比較遠(yuǎn)的直線與橢圓的切點(diǎn)為N,此時(shí)△AMN的面積取得最大值.
聯(lián)立直線方程與橢圓方程,可得:,化簡(jiǎn)可得:,所以,即m2=64,解得m=±8,與AM距離比較遠(yuǎn)的直線方程:,直線AM方程為:,點(diǎn)N到直線AM的距離即兩平行線之間的距離,利用平行線之間的距離公式可得:,由兩點(diǎn)之間距離公式可得.所以△AMN的面積的最大值:.14.(2021年全國(guó)新高考II卷數(shù)學(xué)試題)已知橢圓C的方程為,右焦點(diǎn)為,且離心率為.(1)求橢圓C的方程;(2)設(shè)M,N是橢圓C上的兩點(diǎn),直線與曲線相切.證明:M,N,F(xiàn)三點(diǎn)共線的充要條件是.【答案】(1);(2)證明見解析.【分析】(1)由離心率公式可得,進(jìn)而可得,即可得解;(2)必要性:由三點(diǎn)共線及直線與圓相切可得直線方程,聯(lián)立直線與橢圓方程可證;充分性:設(shè)直線,由直線與圓相切得,聯(lián)立直線與橢圓方程結(jié)合弦長(zhǎng)公式可得,進(jìn)而可得,即可得解.【詳解】(1)由題意,橢圓半焦距且,所以,又,所以橢圓方程為;(2)由(1)得,曲線為,當(dāng)直線的斜率不存在時(shí),直線,不合題意;當(dāng)直線的斜率存在時(shí),設(shè),必要性:若M,N,F(xiàn)三點(diǎn)共線,可設(shè)直線即,由直線與曲線相切可得,解得,聯(lián)立可得,所以,所以,所以必要性成立;充分性:設(shè)直線即,由直線與曲線相切可得,所以,聯(lián)立可得,所以,所以,化簡(jiǎn)得,所以,所以或,所以直線或,所以直線過點(diǎn),M,N,F(xiàn)三點(diǎn)共線,充分性成立;所以M,N,F(xiàn)三點(diǎn)共線的充要條件是.15.(2024年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)已知和為橢圓上兩點(diǎn).(1)求C的離心率;(2)若過P的直線交C于另一點(diǎn)B,且的面積為9,求的方程.【答案】(1)(2)直線的方程為或.【分析】(1)代入兩點(diǎn)得到關(guān)于的方程,解出即可;(2)方法一:以為底,求出三角形的高,即點(diǎn)到直線的距離,再利用平行線距離公式得到平移后的直線方程,聯(lián)立橢圓方程得到點(diǎn)坐標(biāo),則得到直線的方程;方法二:同法一得到點(diǎn)到直線的距離,再設(shè),根據(jù)點(diǎn)到直線距離和點(diǎn)在橢圓上得到方程組,解出即可;法三:同法一得到點(diǎn)到直線的距離,利用橢圓的參數(shù)方程即可求解;法四:首先驗(yàn)證直線斜率不存在的情況,再設(shè)直線,聯(lián)立橢圓方程,得到點(diǎn)坐標(biāo),再利用點(diǎn)到直線距離公式即可;法五:首先考慮直線斜率不存在的情況,再設(shè),利用弦長(zhǎng)公式和點(diǎn)到直線的距離公式即可得到答案;法六:設(shè)線法與法五一致,利用水平寬乘鉛錘高乘表達(dá)面積即可.【詳解】(1)由題意得,解得,所以.(2)法一:,則直線的方程為,即,,由(1)知,設(shè)點(diǎn)到直線的距離為,則,則將直線沿著與垂直的方向平移單位即可,此時(shí)該平行線與橢圓的交點(diǎn)即為點(diǎn),設(shè)該平行線的方程為:,則,解得或,當(dāng)時(shí),聯(lián)立,解得或,即或,當(dāng)時(shí),此時(shí),直線的方程為,即,當(dāng)時(shí),此時(shí),直線的方程為,即,當(dāng)時(shí),聯(lián)立得,,此時(shí)該直線與橢圓無交點(diǎn).綜上直線的方程為或.法二:同法一得到直線的方程為,點(diǎn)到直線的距離,設(shè),則,解得或,即或,以下同法一.法三:同法一得到直線的方程為,點(diǎn)到直線的距離,設(shè),其中,則有,聯(lián)立,解得或,即或,以下同法一;法四:當(dāng)直線的斜率不存在時(shí),此時(shí),,符合題意,此時(shí),直線的方程為,即,當(dāng)線的斜率存在時(shí),設(shè)直線的方程為,聯(lián)立橢圓方程有,則,其中,即,解得或,,,令,則,則同法一得到直線的方程為,點(diǎn)到直線的距離,則,解得,此時(shí),則得到此時(shí),直線的方程為,即,綜上直線的方程為或.法五:當(dāng)?shù)男甭什淮嬖跁r(shí),到距離,此時(shí)不滿足條件.當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè),令,,消可得,,且,即,,到直線距離,或,均滿足題意,或,即或.法六:當(dāng)?shù)男甭什淮嬖跁r(shí),到距離,此時(shí)不滿足條件.當(dāng)直線斜率存在時(shí),設(shè),設(shè)與軸的交點(diǎn)為,令,則,聯(lián)立,則有,,其中,且,則,則,解的或,經(jīng)代入判別式驗(yàn)證均滿足題意.則直線為或,即或.考點(diǎn)09雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)16.(2021年全國(guó)新高考II卷數(shù)學(xué)試題)若雙曲線的離心率為2,則此雙曲線的漸近線方程.【答案】【分析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.17.(2023年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)已知雙曲線的左、右焦點(diǎn)分別為.點(diǎn)在上,點(diǎn)在軸上,,則的離心率為.【答案】/【分析】方法一:利用雙曲線的定義與向量數(shù)積的幾何意義得到關(guān)于的表達(dá)式,從而利用勾股定理求得,進(jìn)而利用余弦定理得到的齊次方程,從而得解.方法二:依題意設(shè)出各點(diǎn)坐標(biāo),從而由向量坐標(biāo)運(yùn)算求得,,將點(diǎn)代入雙曲線得到關(guān)于的齊次方程,從而得解;【詳解】方法一:依題意,設(shè),則,在中,,則,故或(舍去),所以,,則,故,所以在中,,整理得,故.方法二:依題意,得,令,因?yàn)?,所以,則,又,所以,則,又點(diǎn)在上,則,整理得,則,所以,即,整理得,則,解得或,又,所以或(舍去),故.故答案為:.18.(2024年新課標(biāo)全國(guó)Ⅰ卷數(shù)學(xué)真題)設(shè)雙曲線的左右焦點(diǎn)分別為,過作平行于軸的直線交C于A,B兩點(diǎn),若,則C的離心率為.【答案】【分析】由題意畫出雙曲線大致圖象,求出,結(jié)合雙曲線第一定義求出,即可得到的值,從而求出離心率.【詳解】由題可知三點(diǎn)橫坐標(biāo)相等,設(shè)在第一象限,將代入得,即,故,,又,得,解得,代入得,故,即,所以.故答案為:考點(diǎn)10直線與雙曲線位置關(guān)系下的綜合問題19.(2021年全國(guó)新高考I卷數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知點(diǎn)、,點(diǎn)的軌跡為.(1)求的方程;(2)設(shè)點(diǎn)在直線上,過的兩條直線分別交于、兩點(diǎn)和,兩點(diǎn),且,求直線的斜率與直線的斜率之和.【答案】(1);(2).【分析】(1)利用雙曲線的定義可知軌跡是以點(diǎn)、為左、右焦點(diǎn)雙曲線的右支,求出、的值,即可得出軌跡的方程;(2)方法一:設(shè)出點(diǎn)的坐標(biāo)和直線方程,聯(lián)立直線方程與曲線C的方程,結(jié)合韋達(dá)定理求得直線的斜率,最后化簡(jiǎn)計(jì)算可得的值.【詳解】(1)因?yàn)?,所以,軌跡是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的右支,設(shè)軌跡的方程為,則,可得,,所以,軌跡的方程為.(2)[方法一]【最優(yōu)解】:直線方程與雙曲線方程聯(lián)立如圖所示,設(shè),設(shè)直線的方程為.
聯(lián)立,化簡(jiǎn)得,,則.故.則.設(shè)的方程為,同理.因?yàn)?,所以,化?jiǎn)得,所以,即.因?yàn)?,所以.[方法二]:參數(shù)方程法設(shè).設(shè)直線的傾斜角為,則其參數(shù)方程為,聯(lián)立直線方程與曲線C的方程,可得,整理得.設(shè),由根與系數(shù)的關(guān)系得.設(shè)直線的傾斜角為,,同理可得由,得.因?yàn)椋裕深}意分析知.所以,故直線的斜率與直線的斜率之和為0.[方法三]:利用圓冪定理因?yàn)?,由圓冪定理知A,B,P,Q四點(diǎn)共圓.設(shè),直線的方程為,直線的方程為,則二次曲線.又由,得過A,B,P,Q四點(diǎn)的二次曲線系方程為:,整理可得:,其中.由于A,B,P,Q四點(diǎn)共圓,則xy項(xiàng)的系數(shù)為0,即.20.(2022年新高考全國(guó)I卷數(shù)學(xué)真題)已知點(diǎn)在雙曲線上,直線l交C于P,Q兩點(diǎn),直線的斜率之和為0.(1)求l的斜率;(2)若,求的面積.【答案】(1);(2).【分析】(1)由點(diǎn)在雙曲線上可求出,易知直線l的斜率存在,設(shè),,再根據(jù),即可解出l的斜率;(2)根據(jù)直線的斜率之和為0可知直線的傾斜角互補(bǔ),根據(jù)即可求出直線的斜率,再分別聯(lián)立直線與雙曲線方程求出點(diǎn)的坐標(biāo),即可得到直線的方程以及的長(zhǎng),由點(diǎn)到直線的距離公式求出點(diǎn)A到直線的距離,即可得出的面積.【詳解】(1)因?yàn)辄c(diǎn)在雙曲線上,所以,解得,即雙曲線.易知直線l的斜率存在,設(shè),,聯(lián)立可得,,所以,,且.所以由可得,,即,即,所以,化簡(jiǎn)得,,即,所以或,當(dāng)時(shí),直線過點(diǎn),與題意不符,舍去,故.(2)[方法一]:【最優(yōu)解】常規(guī)轉(zhuǎn)化不妨設(shè)直線的傾斜角為,因?yàn)?,所以,由?)知,,當(dāng)均在雙曲線左支時(shí),,所以,即,解得(負(fù)值舍去)此時(shí)PA與雙曲線的漸近線平行,與雙曲線左支無交點(diǎn),舍去;當(dāng)均在雙曲線右支時(shí),因?yàn)椋?,即,即,解得(?fù)值舍去),于是,直線,直線,聯(lián)立可得,,因?yàn)榉匠逃幸粋€(gè)根為,所以,,同理可得,,.所以,,點(diǎn)到直線的距離,故的面積為.[方法二]:設(shè)直線AP的傾斜角為,,由,得,由,得,即,聯(lián)立,及得,,同理,,,故,而,,由,得,故21.(2023年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)已知雙曲線C的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為,離心率為.(1)求C的方程;(2)記C的左、右頂點(diǎn)分別為,,過點(diǎn)的直線與C的左支交于M,N兩點(diǎn),M在第二象限,直線與交于點(diǎn)P.證明:點(diǎn)在定直線上.【答案】(1)(2)證明見解析.【分析】(1)由題意求得的值即可確定雙曲線方程;(2)設(shè)出直線方程,與雙曲線方程聯(lián)立,然后由點(diǎn)的坐標(biāo)分別寫出直線與的方程,聯(lián)立直線方程,消去,結(jié)合韋達(dá)定理計(jì)算可得,即交點(diǎn)的橫坐標(biāo)為定值,據(jù)此可證得點(diǎn)在定直線上.【詳解】(1)設(shè)雙曲線方程為,由焦點(diǎn)坐標(biāo)可知,則由可得,,雙曲線方程為.(2)由(1)可得,設(shè),顯然直線的斜率不為0,所以設(shè)直線的方程為,且,與聯(lián)立可得,且,則,
直線的方程為,直線的方程為,聯(lián)立直線與直線的方程可得:,由可得,即,據(jù)此可得點(diǎn)在定直線上運(yùn)動(dòng).22.(2022年新高考全國(guó)II卷數(shù)學(xué)真題)已知雙曲線的右焦點(diǎn)為,漸近線方程為.(1)求C的方程;(2)過F的直線與C的兩條漸近線分別交于A,B兩點(diǎn),點(diǎn)在C上,且.過P且斜率為的直線與過Q且斜率為的直線交于點(diǎn)M.從下面①②③中選取兩個(gè)作為條件,證明另外一個(gè)成立:①M(fèi)在上;②;③.注:若選擇不同的組合分別解答,則按第一個(gè)解答計(jì)分.【答案】(1)(2)見解析【分析】(1)利用焦點(diǎn)坐標(biāo)求得的值,利用漸近線方程求得的關(guān)系,進(jìn)而利用的平方關(guān)系求得的值,得到雙曲線的方程;(2)先分析得到直線的斜率存在且不為零,設(shè)直線AB的斜率為k,M(x0,y0),由③|AM|=|BM|等價(jià)分析得到;由直線和的斜率得到直線方程,結(jié)合雙曲線的方程,兩點(diǎn)間距離公式得到直線PQ的斜率,由②等價(jià)轉(zhuǎn)化為,由①在直線上等價(jià)于,然后選擇兩個(gè)作為已知條件一個(gè)作為結(jié)論,進(jìn)行證明即可.【詳解】(1)右焦點(diǎn)為,∴,∵漸近線方程為,∴,∴,∴,∴,∴.∴C的方程為:;(2)由已知得直線的斜率存在且不為零,直線的斜率不為零,若選由①②推③或選由②③推①:由②成立可知直線的斜率存在且不為零;若選①③推②,則為線段的中點(diǎn),假若直線的斜率不存在,則由雙曲線的對(duì)稱性可知在軸上,即為焦點(diǎn),此時(shí)由對(duì)稱性可知、關(guān)于軸對(duì)稱,與從而,已知不符;總之,直線的斜率存在且不為零.設(shè)直線的斜率為,直線方程為,則條件①在上,等價(jià)于;兩漸近線的方程合并為,聯(lián)立消去y并化簡(jiǎn)整理得:設(shè),線段中點(diǎn)為,則,設(shè),則條件③等價(jià)于,移項(xiàng)并利用平方差公式整理得:,,即,即;由題意知直線的斜率為,直線的斜率為,∴由,∴,所以直線的斜率,直線,即,代入雙曲線的方程,即中,得:,解得的橫坐標(biāo):,同理:,∴∴,∴條件②等價(jià)于,綜上所述:條件①在上,等價(jià)于;條件②等價(jià)于;條件③等價(jià)于;選①②推③:由①②解得:,∴③成立;選①③推②:由①③解得:,,∴,∴②成立;選②③推①:由②③解得:,,∴,∴,∴①成立.23.(2024年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)已知雙曲線,點(diǎn)在上,為常數(shù),.按照如下方式依次構(gòu)造點(diǎn):過作斜率為的直線與的左支交于點(diǎn),令為關(guān)于軸的對(duì)稱點(diǎn),記的坐標(biāo)為.(1)若,求;(2)證明:數(shù)列是公比為的等比數(shù)列;(3)設(shè)為的面積,證明:對(duì)任意正整數(shù),.【答案】(1),(2)證明見解析(3)證明見解析【分析】(1)直接根據(jù)題目中的構(gòu)造方式計(jì)算出的坐標(biāo)即可;(2)根據(jù)等比數(shù)列的定義即可驗(yàn)證結(jié)論;(3)思路一:使用平面向量數(shù)量積和等比數(shù)列工具,證明的取值為與無關(guān)的定值即可.思路二:使用等差數(shù)列工具,證明的取值為與無關(guān)的定值即可.【詳解】(1)由已知有,故的方程為.當(dāng)時(shí),過且斜率為的直線為,與聯(lián)立得到.解得或,所以該直線與的不同于的交點(diǎn)為,該點(diǎn)顯然在的左支上.故,從而,.(2)由于過且斜率為的直線為,與聯(lián)立,得到方程.展開即得,由于已經(jīng)是直線和的公共點(diǎn),故方程必有一根.從而根據(jù)韋達(dá)定理,另一根,相應(yīng)的.所以該直線與的不同于的交點(diǎn)為,而注意到的橫坐標(biāo)亦可通過韋達(dá)定理表示為,故一定在的左支上.所以.這就得到,.所以.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.(3)方法一:先證明一個(gè)結(jié)論:對(duì)平面上三個(gè)點(diǎn),若,,則.(若在同一條直線上,約定)證明:.證畢,回到原題.由于上一小問已經(jīng)得到,,故.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.所以對(duì)任意的正整數(shù),都有.而又有,,故利用前面已經(jīng)證明的結(jié)論即得.這就表明的取值是與無關(guān)的定值,所以.方法二:由于上一小問已經(jīng)得到,,故.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.所以對(duì)任意的正整數(shù),都有.這就得到,以及.兩式相減,即得.移項(xiàng)得到.故.而,.所以和平行,這就得到,即.考點(diǎn)11拋物線的焦點(diǎn)、準(zhǔn)線、焦參數(shù)24.(2021年全國(guó)新高考II卷數(shù)學(xué)試題)拋物線的焦點(diǎn)到直線的距離為,則(
)A.1 B.2 C. D.4【答案】B【分析】首先確定拋物線的焦點(diǎn)坐標(biāo),然后結(jié)合點(diǎn)到直線距離公式可得的值.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,其到直線的距離:,解得:(舍去).故選:B.25.(2021年全國(guó)新高考I卷數(shù)學(xué)試題)已知為坐標(biāo)原點(diǎn),拋物線:()的焦點(diǎn)為,為上一點(diǎn),與軸垂直,為軸上一點(diǎn),且,若,則的準(zhǔn)線方程為.【答案】【分析】先用坐標(biāo)表示,再根據(jù)向量垂直坐標(biāo)表示列方程,解得,即得結(jié)果.【詳解】拋物線:()的焦點(diǎn),∵P為上一點(diǎn),與軸垂直,所以P的橫坐標(biāo)為,代入拋物線方程求得P的縱坐標(biāo)為,不妨設(shè),因?yàn)镼為軸上一點(diǎn),且,所以Q在F的右側(cè),又,因?yàn)椋?,所以的準(zhǔn)線方程為故答案為:.考點(diǎn)12拋物線的焦點(diǎn)弦問題26.(2020年新高考全國(guó)卷Ⅰ數(shù)學(xué)試題)斜率為的直線過拋物線C:y2=4x的焦點(diǎn),且與C交于A,B兩點(diǎn),則=.【答案】【分析】先根據(jù)拋物線的方程求得拋物線焦點(diǎn)坐標(biāo),利用點(diǎn)斜式得直線方程,與拋物線方程聯(lián)立消去y并整理得到關(guān)于x的二次方程,接下來可以利用弦長(zhǎng)公式或者利用拋物線定義將焦點(diǎn)弦長(zhǎng)轉(zhuǎn)化求得結(jié)果.【詳解】∵拋物線的方程為,∴拋物線的焦點(diǎn)F坐標(biāo)為,又∵直線AB過焦點(diǎn)F且斜率為,∴直線AB的方程為:代入拋物線方程消去y并化簡(jiǎn)得,解法一:解得
所以解法二:設(shè),則,過分別作準(zhǔn)線的垂線,設(shè)垂足分別為如圖所示.故答案為:27.(多選)(2023年新課標(biāo)全國(guó)Ⅱ卷數(shù)學(xué)真題)設(shè)O為坐標(biāo)原點(diǎn),直線過拋物線的焦點(diǎn),且與C交于M,N兩點(diǎn),l為C的準(zhǔn)線,則(
).A. B.C.以MN為直徑的圓與l相切 D.為等腰三角形【答案】AC【分析】先求得焦點(diǎn)坐標(biāo),從而求得,根據(jù)弦長(zhǎng)公式求得,根據(jù)圓與等腰三角形的知識(shí)確定正確答案.【詳解】A選項(xiàng):直線過點(diǎn),所以拋物線的焦點(diǎn),所以,則A選項(xiàng)正確,且拋物線的方程為.B選項(xiàng):設(shè),由消去并化簡(jiǎn)得,解得,所以,B選項(xiàng)錯(cuò)誤.C選項(xiàng):設(shè)的中點(diǎn)為,到直線的距離分別為,因?yàn)?,即到直線的距離等于的一半,所以以為直徑的圓與直線相切,C選項(xiàng)正確.D選項(xiàng):直線,即,到直線的距離為,所以三角形的面積為,由上述分析可知,所以,所以三角形不是等腰三角形,D選項(xiàng)錯(cuò)誤.故選:AC.
28.(多選)(2022年新高考全國(guó)II卷數(shù)學(xué)真題)已知O為坐標(biāo)原點(diǎn),過拋物線焦點(diǎn)F的直線與C交于A,B兩點(diǎn),其中A在第一象限,點(diǎn),若,則(
)A.直線的斜率為 B.C. D.【答案】ACD【分析】由及拋物線方程求得,再由斜率公式即可判斷A選項(xiàng);表示出直線的方程,聯(lián)立拋物線求得,即可求出判斷B選項(xiàng);由拋物線的定義求出即可判斷C選項(xiàng);由,求得,為鈍角即可判斷D選項(xiàng).【詳解】對(duì)于A,易得,由可得點(diǎn)在的垂直平分線上,則點(diǎn)橫坐標(biāo)為,代入拋物線可得,則,則直線的斜率為,A正確;對(duì)于B,由斜率為可得直線的方程為,聯(lián)立拋物線方程得,設(shè),則,則,代入拋物線得,解得,則,則,B錯(cuò)誤;對(duì)于C,由拋物線定義知:,C正確;對(duì)于D,,則為鈍角,又,則為鈍角,又,則,D正確.故選:ACD.考點(diǎn)13直線與拋物線的位置關(guān)系29.(多選)(2022年新高考全國(guó)I卷數(shù)學(xué)真題)已知O為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,過點(diǎn)的直線交C于P,Q兩點(diǎn),則(
)A.C的準(zhǔn)線為 B.直線AB與C相切C. D.【答案】BCD【分析】求出拋物線方程可判斷A,聯(lián)立AB與拋物線的方程求交點(diǎn)可判斷B,利用距離公式及弦長(zhǎng)公式可判斷C、D.【詳解】將點(diǎn)的代入拋物線方程得,所以拋物線方程為,故準(zhǔn)線方程為,A錯(cuò)誤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 粉末冶金成型工操作管理水平考核試卷含答案
- 礦壓觀測(cè)工班組建設(shè)知識(shí)考核試卷含答案
- 高壓試驗(yàn)工安全專項(xiàng)水平考核試卷含答案
- 醫(yī)藥商品購(gòu)銷員安全強(qiáng)化考核試卷含答案
- 2025年有機(jī)廢水沼氣系統(tǒng)項(xiàng)目發(fā)展計(jì)劃
- 2025年引導(dǎo)信標(biāo)機(jī)合作協(xié)議書
- 2026年1月24日河北省直機(jī)關(guān)選調(diào)面試真題及答案解析(上午卷)
- 狙擊槍介紹課件
- 環(huán)境局業(yè)務(wù)培訓(xùn)課件模板
- 燃?xì)獍踩[患排查報(bào)告燃?xì)獍踩[患排查整治工作總結(jié)
- 中遠(yuǎn)海運(yùn)集團(tuán)筆試題目2026
- 2026年中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所高層次人才引進(jìn)備考題庫含答案詳解
- 妝造店化妝品管理制度規(guī)范
- 2025-2026學(xué)年四年級(jí)英語上冊(cè)期末試題卷(含聽力音頻)
- 浙江省2026年1月普通高等學(xué)校招生全國(guó)統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- 2026屆川慶鉆探工程限公司高校畢業(yè)生春季招聘10人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 基本農(nóng)田保護(hù)施工方案
- 銷售心理學(xué)全集(2022年-2023年)
- 變態(tài)反應(yīng)課件
- 電力拖動(dòng)控制線路與技能訓(xùn)練-教案
- 50年同學(xué)聚會(huì)邀請(qǐng)函(十二篇)
評(píng)論
0/150
提交評(píng)論